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Abstract: - This paper presents an algorithm for identification of the longitudinal and lateral movements of an 
aircraft. For identification a prediction state observer (Luenberger observer) has been projected. To perform 
the identification, the authors use the Matlab program from Appendix and an algorithm for the feedback gain 
matrix obtaining (ALGLX algorithm). With the obtained state observer a stabilization compensator has been 
made. The characteristics that express time variations of the state variables and indicial responses prove that 
the identification of the longitudinal and lateral movement of an aircraft has been made with small errors in 
good conditions. The presented Matlab program may be used with good results for identification and control 
of any system. 
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1 Introduction 

To use a control law one must know the state 
variables. From the practical point of view, because 
of high prices of the transducers and interfaces, the 
measurement of all state variables isn’t advisable. 
The state observers are the solution to this problem; 
they estimate the process’ states using only the input 
and the output vectors of the process [1], [2], [3].  

The use of a state observer leads to important 
savings, especially in the case of a state vector with 

 components. Instead of  transducers and  

measurement interfaces only one transducer and one 
interface will be used.  

n n n

For estimate the states of an observer the 
system must be observable. That means that the rank 
of the matrix Q  
 [ ]1−⋅⋅= nT ACACCQ L  (1) 
must be equal with the lines’ number of matrix A  
from the state general equations that describes a 
system 

 
.
,

DuCxy
BuAxx

+=
+=&  (2) 

Proceedings of the 11th WSEAS International Conference on Automatic Control, Modelling and Simulation

ISSN: 1790-5117 322 ISBN: 978-960-474-082-6

mailto:lma1312@yahoo.com
mailto:romulus_lungu@yahoo.com
mailto:lgrigorie@elth.ucv.ro


For doing this in Matlab one uses the instruction 
obsv with the following syntax 

Q=obsv(A,C); r=rank(Q); 
The controllability and observability of a 

system are dual properties. That means that the pair 
 is controllable if pair  is observable. The 

pair  is observable if pair  is controllable. 
),( BA

(C
),( TT AB

,( TT CA), A )
 
 
2 The project of a prediction state 

observer 
The equation that describes the Luenberger 

(prediction) state observer is [4] 
  (3) ( ,ˆˆˆ xCyLBuxAx −++=& )
where  is the estimated state vector and  the gain 
matrix of the observer. This matrix has the same 
lines’ number as matrix 

x̂ L

A  and the same columns’ 
number as matrix   .B

Taking into account 

 
,ˆˆ
,

uDxCy
uDxCy
⋅+⋅=
⋅+⋅=

 (4) 

the first equation (2) leads to 
 ( ) ,~ eAeCLAeCLeAe ⋅=⋅⋅−=⋅⋅−⋅=&  (5) 
where  is the estimation error of the prediction 
observer. Gain matrix of the observer 

e
( )L  is 

calculated by assessing the eigenvalues for matrix 
LC−AA =

~  (the eigenvalues are contained by the 
column vector P) by the mean of command acker 
(Ackermann algorithm) or place 

         L=acker(A’,C’,P);L=L’; 
         L=place(A’,C’,P); L=L’; 

The condition that must be respected is the contro-
llability of the pair  or the observability of 
the pair  

( TT CA , )
( )., AC

For stabilization of the system described by 
equation (2) one uses the control law 
  ;x̂Ku −=  (6) 
matrix K  is the gain matrix of the system. The 
calculus of this matrix is made using instructions 
acker and place; instead of matrix  matrix  is 
now used. This is another case when some 
eigenvalues must be asset for the matrix 

C B

BK .A −  
The obtaining of matrix K  is made, both for 
longitudinal and lateral movements of the aircraft, 
using the authors’ algorithm (ALGLX algorithm) 
[5]. Between the eigenvalues of the observer and the 
eigenvalues of matrix  there is the following 
relationship 

BKA −

  { } { } .Re105Re maxmin systemobserver λ÷>λ  (7) 

That means that the eigenvalues of the observer are 
chosen such that their minimum real part is 105 ÷  

times bigger than maximum real part of the system’s 
eigenvalues. 

The ensemble formed by the command law 
(matrix K ) and the observer is called stabilization 
compensator (fig.1). 

 

 
Fig.1. Block diagram of the stabilization 

compensator with prediction observer 
 

For obtaining the equation of the stabilization 
compensator one uses equations (3) and (6); it 
results 
  ( ) LyxALCxxLCBKAx +=+−−= ˆˆ&̂  (8) 
where  
  .LCBKAA −−=  (9) 
The state equations that describe the stabilization 
compensator are 

  
.ˆ

,ˆˆ
xKu

LyxAx
−=

+=&  (10) 

The input of the compensator is the output of the 
process  and the output of the process is the 
command vector 

)(y
( ).u  

The transfer function of the compensator is 
  ( ) ( ) ;ss 1 LAIKH T −

−−=  (11) 
I  is the identity matrix of order  .n

From the stabilization compensator’s equation 
(8) and the first state equation (2) one obtains 
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where  

  (13) .⎥
⎦

⎤
⎢
⎣

⎡
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=

LCBKALC
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AR

The eigenvalues of the compensator are the 
eigenvalues of the matrix  the solutions of the 
characteristic equation 

−RA
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 0=−λ RAI  (14) 
equivalent with 

 .0=
++−λ−

−λ
LCBKAILC

BKAI  (15) 

In the above determinant, one adds column 2 to 
column 1 and obtains 
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0
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or  
 ( )[ ] ( )[ ] .0=−−λ⋅−−λ LCAIBKAI  (17) 
So, the eigenvalues of the compensator represents 
the reunion between the eigenvalues associated to 
the command law and the eigenvalues of the 
observer. 
 
 
3 Stabilization compensator with 

prediction observer for the longi-
tudinal movement of an aircraft 
Lets’ consider the case of the non-dimensional 

longitudinal movement of an aircraft [5] 
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where 

           ;ˆ,ˆ,ˆ,ˆ,ˆ
** αΔ=αθΔ=θω=ω

τ
=

Δ
= yy

a V
btt

V
VV  (19) 

−=τ sa 1,2  the aerodynamic time constant, −ΔV  the 
variation of the flight velocity,  the pitch angle, 

 the attack angle,  rectilinear uniform 
flight’s velocity,  the rudder deflection. 

−θ
−α −*V

−δ p

The system is considered to be a system with 
one input ( )pδ  and one output ( ).ˆ yω   
  (20) [ ] .0;1000 == DC [ ]

Because the eigenvalues of the matrix BKA−  
aren’t known, the authors use the ALGLX algorithm 
[5] in order to obtain the gain matrix  After this 
purpose is achieved, using the eigenvalues of matrix 

.K

BKA−
LCA−

 and equation (7), the eigenvalues of matrix 
 are obtained (the eigenvalues of the 

observer). 
One obtains 

  (21) [ .0.5396.897-5.0200.547=K ]
The Matlab program is presented in Appendix. For 
the system with stabilization compensator and 
prediction observer one obtained the gain matrix of 

the observer ( ),_ predL  the direct transfer function 
( )( ),sdH  the transfer function of the feedback (the 

transfer function of the stabilization compensator - 
( )scpH ), the transfer function of the closed loop 

system (positive feedback) -  the poles of 
the closed loop system -  and the zeros of 
this system -  

( ),spredH

predpol _
._ predzero

[ ]

( )

( )

  . 0.0; 0.029-; 0.0762-; 2.837-
; 2.997-;35.6617i- 16.9005-;35.6617i+ 16.9005- =
         , 0.1072-; 0.3283-; 0.5361-;;-1.64146.2155i - 3.3998-

;6.2155i + 3.3998-;6.2155i - 16.9992-; 6.2155i + -16.9992= 

,
310.3s4492s107.1s1004.2s4537s9.649s77.41s

102.73s85.17s6.845s8404s5169s5.823ss

,
205.22686ss 820.5s

1764 -s103.865204ss 785.4s

,
1.512s352.1s68.49s696.6s

101.332s087.0s026.3s)s(

,29.48189.6605-6.3245-47.9578_

24344567

13-23456

23

4-23

234

15-23

zero_pred 
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H

H

H
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d
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The block diagram of the stabilization compensator 
with prediction observer is the one from fig.2 (the 
subsystems are in fig.3). 

 
Fig.2. Block diagram of the stabilization 

compensator with prediction observer 
 

 
Fig.3. The subsystems of system from fig.2 

 

Using the Matlab program from Appendix and the 
model Matlab/Simulink from fig.2 one obtains the 
indicial response of the closed loop system (fig.4), 
time variations of the components of the state 
vectors x  and  (x̂ x  with blue color and  with red 
color) (fig.5) and time variations of the four 
components of error vector  (fig.6). 

x̂

xxe ˆ−=
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Fig.4. The indicial response of the closed loop  

system (longitudinal movement) 
 

 
Fig.5. Time variations of the components of the  
state vectors x  and  (longitudinal movement) x̂

 

 

Fig.6. Time variations of the four components of 
error vector  (longitudinal movement) xxe ˆ−=

 
 
4 Stabilization compensator with 

prediction observer for the lateral 
movement of an aircraft 
Let’s consider now the case of the lateral 

movement of a fight aircraft which flies with 
 at  with values from [6]; the 

state vector and the input vector are 
,5.1=M ft,10000=H

        [ ] [ ;, df
T

zx
T ux δδ=ϕΔωΔωΔβΔ= ]  (22) 

β  is the sideslip angle,  the roll angular 
velocity, 

−ωx

−ωz  the yaw angular velocity, −ϕ  the roll 
angle, −δ f  the flaps deflection,  the direction 
deflection. The matrices from state equations (2) are 

−δd

[ ] [ ] .00,1000

,

00
436.0249.0

849.1246.8
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This time the system is a system with two 
inputs (the deflection of the flaps and the deflection 
of the direction) and one output ( ).ϕΔ  As a 
consequence will be obtained two transfer functions 
(the first associated to the input  and output fδ ϕΔ  
and the second associated to the input dδ  and the 
output ϕΔ ).  

The methodology is the same with the one 
presented above for the longitudinal movement of 
the aircraft. With the ALGLX algorithm one obtains 
the gain matrix K  

   .
2.619-7.952-0.183-7.844-
4.2230.6580.9678.209

⎥
⎦

⎤
⎢
⎣

⎡
=K

A similar Matlab program to the one presented 
in Appendix leads to the obtaining of the gain matrix 
of the Luenberger observer (  of the poles of 
the two closed loop transfer functions  

 and of the two closed loop transfer 
functions 

),_ predL
1_( predpol

,)2_ predpol
( ) ( ) ( ) ( ) ( ) ( )( ).s/s ds,s 2/ss f1 δϕΔδ =ϕΔ= predHpredH  

 

[ ]

; 0.7868-;4.5679i - 2.2605- ;4.5679i + 2.2605-  
;8.6595i - 3.5340-;8.6595i + 3.5340-

;10.9214i- 24.3838-;10.9214i+ 24.3838-; 62.2109-=2
;0.5769i - 1.7782-;0.5769i + 1.7782-

;5.8092i - 0.7656-;5.8092i + 0.7656-; 13.2191-
24.2263i- 16.5483-;24.2263i+ 16.5483-;71.9509- =1

;0.09351.57112.12190.3418-10_ 3

 pol_pred

 pol_pred
predL T⋅=

 

 

( )

( ) .
1093.7s1027.1s1012.4s1076.9s102.1s1008.1s5276s4.123s

1012.1s107.2s1024.8s1061.1s7822s1.212s85.1
s

;
109.82s1016.1s1093.4s103.9s1056.1s1033.1s5276s4.123s

109.83s1083.2s1019.5s1078.7s1061.3s953s24.8s1088.8s

7827364655678

762535456

2

7827364655678

7726354456715

1

⋅+⋅+⋅+⋅+⋅+⋅+++
⋅+⋅+⋅+⋅+++

=

⋅+⋅+⋅+⋅+⋅+⋅+++
⋅+⋅+⋅+⋅+⋅+++⋅−

=
−

pred

pred

H

H

 

To obtain indicial responses (fig.7 and fig.8), time 
variations of the components of the state vectors x  
and  (x̂ x  with blue color and  with red color) 
(fig.9) and time variations of the four components of 
error vector 

x̂

xxe ˆ−=  (fig.10) the diagram block 
from fig.2 is used.  
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Fig.7. Indicial response of the system  

(input 1) for the lateral movement 
 

 
Fig.8. Indicial response of the system  

(input 2) for the lateral movement 
 

 
Fig.9. Time variations of the components of the 

state vectors x  and  (lateral movement) x̂
 
 

 
Fig.10. Time variations of the four components  

of error vector  (lateral movement) xxe ˆ−=

5 Appendix 
close all; clear all; 
A=[-0.026 0.025 -0.1 0;-0.36 -3 0 1;0 0 0 1; 
       0.4212 -38.49 0 -3.67]; B=[0;0;0;1]; 
Q=[10 0 0 0;0 10 0 0;0 0 100 0;0 0 0 1];R=[2]; 
[K,P,E] = LQR(A,B,Q,R);I2=[1 0;0 1]; 
N3=randn(4,3); T(:,1)=B(:,1); 
for i=1:4 
    for j=1:3 
        T(i,j+1)=N3(i,j); 
    end 
end  
Ab=(inv(T))*A*T; Bb=(inv(T)*B); 
Kb=place(Ab,Bb,E); 
e=eig(Ab-Bb*Kb); 
k1=Kb(1);k21=Kb(2);k22=Kb(3);k23=Kb(4); 
r1=1;Rb=[r1];R=Rb; 
Pb=r1*[k1 k21 k22 k23;k21 1 0 0; 
             k22 0 1 0; k23 0 0 1]; 
ee=eig(Rb); 
Qb=-(Pb*Ab+(transpose(Ab))*Pb-Pb*Bb*Kb); 
PPP=transpose(inv(T))*Pb*inv(T); 
KKK=inv(R)*transpose(B)*PPP; 
EEE=eig(A-B*KKK);m=rank(T); 
while real(EEE(1))>0 | real(EEE(2))>0 | 
real(EEE(3))>0 | real(EEE(4))>0 | m<4 
N3=randn(4,3);T(:,1)=B(:,1); 
for i=1:4 
    for j=1:3 
        T(i,j+1)=N3(i,j); 
    end 
end  
Ab=(inv(T))*A*T;Bb=(inv(T)*B); 
Kb=place(Ab,Bb,E); 
e=eig(Ab-Bb*Kb); 
k1=Kb(1);k21=Kb(2);k22=Kb(3);k23=Kb(4); 
r1=5;Rb=[r1];R=Rb; 
Pb=r1*[k1 k21 k22 k23;k21 1 0 0; 
            k22 0 1 0; k23 0 0 1]; 
ee=eig(Rb); 
Qb=-(Pb*Ab+(transpose(Ab))*Pb-Pb*Bb*Kb); 
PPP=transpose(inv(T))*Pb*inv(T); 
KKK=inv(R)*transpose(B)*PPP; 
EEE=eig(A-B*KKK);m=rank(T);  
end  
Q=transpose(inv(T))*Qb*inv(T);R=Rb; 
[KK,PP,EE] = LQR(A,B,Q,R); 
K=KK; 
% Longitudinal movement n=4 
clear Ab; clear Bb; clear i; 
% System’s matrices 
n=size(A,1); q=size(B,2); 
C=[0 0 0 1]; s=size(C,1); 
D=zeros(s,q);                           
x0=[0;1;2;3];         % Initial system’s state 
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6   Conclusion % Process transfer function 
[num_d,den_d]=ss2tf(A,B,C,D);           For identification of the longitudinal and lateral 

movement of an aircraft, a prediction state observer 
(Luenberger observer) has been projected. In 
Appendix is presented a Matlab program for the 
longitudinal movement of the aircraft. The obtained 
results show that the algorithm may be used with 
good results to any system’s identification. All the 
variables tend to zero; this is very good because 
these variables are preceded by the symbol Δ  (the 
variables are, in fact, variations of some angles, 
angular velocities and so on). To perform the 
identification, the authors has used the algorithm 
for the feedback gain matrix obtaining (ALGLX) 
[5]. 

% Eigenvalues of matrix(A-B*K) 
pp=eig(A-B*K);                          
% Eigenvalues of the prediction observer 
for j=1:length(pp) 
R(j)=real(pp(j));   
I(j)=imag(pp(j));  
RR=R*5; II=I;  
ee(j)=RR(j)+II(j)*i;  
qq=ee';                    
end 
OB=obsv(A,C);CO=ctrb(A,B);             
r1=rank(OB);r2=rank(CO); 
% Matrix L_pred determination 
L_pred=place(A',C',qq);                 
L_pred=L_pred';  
% State equations of the stabilization compensator References: 
Ab=A-B*K-L_pred*C; [1] Donald, Mc.L. Automatic Flight Control 

Systems. New York, London, Toronto, Syd-
ney, Tokyo, Singapore. 

Bb=L_pred; 
Cb=-K; 
Db=D; [2] Sîngeorzan, D.  Regulatoare adaptive. Editura 

Militară, Bucureşti, 1992. % Initial state of the observer 
x0_obs=zeros(size(x0));                [3] Yuan, Y., Yu, P., Librescu, L., Marzocca, P. 

Aeroelasticity of Time – Delayed Feedback 
Control of Two – Dimensional Supersonic 
Lifting Surfaces. Journal of Guidance, Control 
and Dynamics. Vol. 27, nr. 5, 2004, pag. 795 – 
804. 

% Transfer function of the compensator 
[num_cp,den_cp]=ss2tf(Ab,Bb,Cb,Db); 
% Closed loop transfer function 
[num_pred,den_pred]=feedback(num_d,den_d, 
num_cp,den_cp,+1); 
pol_pred=roots(den_pred) [4] Ilas, M., Priboianu, M. Teoria sistemelor de 

reglare automata. Indrumar de laborator. Ed. 
Matrix Romanai, Bucuresti, 2004. 

zero_pred=roots(num_pred); 
sys_d=tf(num_d,den_d) 
sys_cp=tf(num_cp,den_cp) [5] Lungu, M. Sisteme de conducere a zborului. 

Editura Sitech, Craiova, 2008, 329 pag. ISBN 
978-973-746-975-5. 

sys_pred=tf(num_pred,den_pred) 
% State variables time variations 
sim('Comp_obs_pred_long'); [6] Choi, J.W. LQR Design with Eigenstrucutre 

Assignement Capability. IEEE Transactions on 
Aerospace and Electronic Systems, vol. 35, 
Nr.2, April, 1999, pag. 700 – 707. 

e1=x1-x1_pred;e2=x2-x2_pred; 
e3=x3-x3_pred;e4=x4-x4_pred; 
t=linspace(0,15,length(x1)); 
step(sys_pred);grid;h=figure;  
subplot(221);plot(t,x1,t,x1_pred,':r'); 

 grid; xlabel('Time [adim]'); 
subplot(222);plot(t,x2,t,x2_pred,':r'); 
grid; xlabel('Time [adim]'); 
subplot(223);plot(t,x3,t,x3_pred,':r'); 
grid; xlabel('Time [adim]'); 
subplot(224);plot(t,x4,t,x4_pred,':r'); 
grid; xlabel('Time [adim]'); 
h=figure; 
subplot(221);plot(t,e1);grid;xlabel('Time [adim]'); 
subplot(222);plot(t,e2);grid;xlabel('Time [adim]'); 
subplot(223);plot(t,e3);grid;xlabel('Time [adim]'); 
subplot(224);plot(t,e4);grid;xlabel('Time [adim]'); 
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