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Abstract: - The paper presents complex adaptive non-linear systems with one input and one output which are
based on dynamic inversion. Linear dynamic compensator makes the stabilization command of the linearised
system using as input the difference between closed loop system’s output and the reference model’s output
(command filter). The state vector of the linear dynamic compensator, the output and other state variables of
the control system are used for adaptive control law’s obtaining; this law is modeled by a neural network. The
aim of the adaptive command is to compensate the dynamic inversion error. Thus, the command law has two
components: the command given by the linear dynamic compensator and the adaptive command given by the
neural network. For estimation the dynamic compensator’s state, the non-linear adaptive controller may have a
linear reduced order observer. As control system one chooses the non-linear model of helicopter’s dynamics in
longitudinal plain. The reference model is linear. One obtains the structure of the adaptive control system of
the pitch angle and Matlab/Simulink models of the adaptive command system’s subsystems. Using these,
some characteristics families are obtained. These describe the adaptive command system’s dynamics with
linear or non-linear actuator.
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1 Introduction observers; these observers get information about the

The complexity and incertitude that appear in ~ control system’s error [2], [3], [4].

the non-linear and instable phenomena are the main
reasons that require the projecting of non-linear
adaptive structures for control and stabilization; in 2 Dynamic SISO systems

these cases the linear models are far from a good Let’s consider the dynamic system (A) with
describe of the flying object’s dynamic. Another single input and single output (SISO) described by
reason is the non-linear character of the actuators equations

(because of the saturation and/or their displacement %= f(x,u),y=h(x), (1

velocity). The observers must be easily adaptable
and their project algorithms must allow the
estimation of the state of the flying object even in i i i
the case of their failure or no use of the damaged One projects an adaptive control law v after (in
sensors’ signals. In these situations it’s good to use rapport with) th? output; the neural network (NN)
the real time adaptive control based on neural models a function that depends on the values of
networks and dynamic inversion of the unknown or input and output of A at different time moments so
partial known nonlinearities from the dynamic that y(t) follows the finite y(t). The feedback lineari-
model of the flying object [1]. The train of the zation may be made through transformation [5]

neural networks is based on the signals from state V= ﬁr(y,u), )

with x(nx1),n— unknown f and h— unknown
nonlinear functions, U and y — measurable.
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with v is the pseudo-command signal and ﬁr(y,u) -
the best approximation of h (x,u)=h, (x(y), u).
Equation (2) is equivalent with the following one

u=h"(y.v). (3)
If ﬁr =h, one yields y" =v; otherwise
(ﬁ, # hr)
y" =v+e, 4)
where
e=g(x,u)=h,(x,u)-h,(y,u) (5)

is the approximation of function h, (inversion
error). Assessing y to follow Y, then v has the
form [5], [6], [7]

V=y" v -V, 4V, (6)
where v, is the output of the dynamic linear
compensator for stabilization, used for liniarised
dynamic (4), with € =0,v, — the adaptive command
that must compensate € and V has the form [8]

v=klf2], +z) |+ kE

with k,,k, >0 gain constants, ”2“ — the Frobenius
F

VA (7)

norm of matrix Z,Z — the ideal matrix of the neural
network and E=EPB, with E,P and B-
matrices. The derivative y is introduced for the
conditioning of the dynamic error y =y -Yy. This
derivative is given by a reference model (command
filter) [5]. ¥’ may be cumulated with other signals
and it results the component v, of form (11).

Considering
YT = [y y y(r—l)], 77 = [V Vo V(p)]’ @®)
A =[7»0 7\.1 7&,_1], b' =[b0 bl bp]’

with b, ,i= ﬁ,xi ,j=0,r—1 the coefficients of the
numerator and denominator of the transfer function
for the system with input U, and output y, the
linear system with input v and output Yy is des-
cribed by equation

y"O =-AY +b'Z +e. 9)
If p=0, then Z=v,b=D, and the previous equation

becomes

y"? =AY +byv+e. (10)
In the particular case y” = y", one obtains

v :bi(y“) +AY). (11)

0
The compensator may be described by state
equations
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C = +b.e,
S=AG+D, (12)
Ve =Cg+de,
where ¢ has at least dimension (r —1),
e=y=cee’ =l ¢ e},
y=cee’ = b

c=[t 0 0 0]

The state equation of the linear subsystem with input
(v+¢) and output y is

Ixr*®

X=AX+b(V+e)v=v,-v,+7, (14)
where
0 1 O
0
0o 0 1
A b= . (3
0 0 0 - 1 1
0 0 0 e 0 rxl

The stable state Y(Y =V=g= 0) verifies equation

AX =0 and, taking into account (14), leads to the
equation of the error vector e =X =X — X,

é=Ae—bv,, +b(v, -V —¢). (16)
With notations
E:{e}A:{A—dcbc —bcc}b:{b}cz{c O} (17)
G b.c A, 0 0 1

where | is the identity matrix with the ¢’s dimen-
sion, one obtains

E=AE+b(v,-V-¢),2=CE; (18)
A.b,,c.,d, from (12) are calculated such that A be

a Hurwitz matrix.
For the estimation of the error vector E one
may use a linear state observer of order (2r-1)

described by equations
E=AE+L(z—2),2=CE, (19)

with the gain matrix L calculated so that matrix
/&:(K— LC ) is stable. Considering w— the sensor
measure error, Y, — the measured value of y, then
Y. =yV-vy,=Y+w and the compensator’s equations
become

E=AE+b(v, -V—¢)+Gw,z=CE + Hw.
with H" =l 0],G" =[-hd, b,]
If state g of the compensator is known, one uses a

(20)

reduced order observer for estimation of vector €
€2y
The gain matrix L, is obtained so that matrix
A= (K - L,c) is stable. With vectors € and ¢ vector
E"=[6 ¢]is obtained.
E=E"Pb
network’s adapting; the weights W and V are
obtained with equation

é=Aé+L,(z,-12)2 =cé.

The signal is used for neural
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A

W =1, l6-6VTn)E"PB + k(W -, )]
V =1, pnE"PBs" + ki -V, )|

where the role of B is played by b. In (22) o is the
sigmoid function

(22)

1
Z)= , 23
ofe)=—o @3)
G = % is the Jacobian of vector &,W, and V,
z 7=2

the initial values of weights W,V,T,,,T}, >0,
> 2k +77[PBJ] ). k, = ksct, + [PBJy,. k. = PB] + |PB

B

P and P — the solutions of Liapunov equations
ATP+PA=-Q,A"P+PA=-Q. (24)

P from the signal used for the neural network’s

adapting is the solution of first equation (24) with

A=(A-d_bc).

Second output of the compensator (Va) is used for

obtaining of an error signal that is useful for

adapting of the neural network’s weights.
From (4) and (6) one yields

yO =" v -V, +V +g, (25)
equivalent with the dynamic error’s equation
VO =—v,+v, -V -¢. (26)

=¥

LINEAR
DYNAMIC
COMPENASTOR

Fig.1. Automat control system with
non-linear adaptive controller

According to (26) and fig.1, it results the block
diagram for the dynamic error’s modeling (fig.2).

Error € may be approximated with the output
of a linear neural network NN [5]

e=WTd(n)+umhu <, @D
where W is the weights’ matrix for the connections

between layer 2 and layer 3 (NN has 2 layers),
u(n)— the reconstruction error of the function and

n — the input vector of NN
= o ol (28)
where
M=t vit-d) - vt-(n,-r-1)d)]", (29)
Vi =[y® yt-d) - yt-(n-1)d)]",
with n, >n and d >0;v, is projected so that
v, =W d(n),

where W is the estimation of W.

(30)
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= v
1] YV | NON-LINEAR i
— ADAPTIVE
s CONTROLLER |—*= _
Ya

Fig.2. Block diagram of the dynamic
error’s modeling

3 Adaptive system for the helicopter

pitch angle command
Lets’ consider the case of nonlinear dynamic of
an experimental helicopter R — 50 with one input
and one output; its dynamic is (1) with
X =V, o, & B V]u=8y=6, (1)
where V.V, are the advance velocity, respectively

the vertical velocity, 0 and o, — the pitch angle and

the pitch angular velocity, p— the longitudinal

control angle of the main rotor, §— the cyclic
longitudinal input. Choosing the linearised model of
helicopter [9] and, annexing the actuator’s equation

B+8=35,, (32)
the new state vector x! =b/ 0 BV, 8],

input u=3,, output y=0 and state equation are

X 0‘)y

obtained

v, Xo  Xo o Xy X, X, X1V, 0

o, M, Mg 00 Mg M Mo, 0 (33)
0|0 0991 0 0 0 0 0] 0 |

p| B -1 o0 B 0 B |B 0o |

v, z, Z, Z, Z, Z, Z; |V, 0

(6] L0 0o 0 o0 0 -lUt)[s] [~

From (33) one yields

y=0=0,§=0=M\V,+M 0+MB+MV, +M35.(34)
In order to relieve the non-linear function
h,(x,u)=h,(x,5,), one must express an equation that

contains §,. By derivation of the second equation
(34) and substituting &, = f=y and 5 from (32) it
results

y=0=MV, +M 0+MB+MV, -

Ms5.Mss (35)
T T
So, this equation may be completed with a non-
linear component so that (35) has the form
r _ i dfh .
y _hr(r’u)’hr_dtr >
It results r=3. The control system has the form

from fig.1. One chooses the reference model
P,
s+ p)(s2 +28,0,,8+ 07,

p=25¢&, =070, =10rad/s.

(36)

a

)yc > (37)
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The transfer function for the system with input u,
and output y has the form
b b
H = 0 = 0 ; 38
) s +0,s° s’(s+b,) %)

One has chosen A, =b,. According to (8) it results

Z =v,\, =X, =0 and equation (9) becomes
y=-b,y+byv+e. (39)
By elimination of §=0 between the second
equation (34) and (35) one yields

o . . .M, M,
y=0=M)V, +MBB+MWVZ _T8+TSC+ (40)

+M, (MY, + M B+M,V, + M 5)+M26.
Replacing y given by the second equation (34) and
y given by (40) in (39) one may identify v and ¢
as follows: 1) v must have the form v=h, (x,u)=
=h(x,5,), where x' = [6 0 é]; h, depends on
some of state vector’s components; 2) ¢ depends on
the other terms that contain VX,VZ,B,S,\/X,\/Z,B. One
obtains
3, =u :MAi[bOV—Mq(Mq +b0)é]: h(x,v),
s

o= (M, 20 )0, + M pemy, nag)s 4D

. . . M
+M\V, +MB+MV, ——=35.
T

Because A’ =[0 0 b,] and VTz[y y y], with
(11) one obtains

NON LINEAR

v, :bi('y"+bov). (42)
0

By choosing for the compensator a proportional -
derivative control law v , =k ¥ + kd?, the law (6),

in which the role of ¥ is played by v, , becomes
v:kp7+kd7+bi'?+§7—va+\7; (43)
0
Taking into account (4) and (43) it results
Y =-b.k,¥ —bk, ¥ —b,y + (bv, —b,7 —¢). (44)
The system that describes the dynamic of the
error e’ =f7, ¥ 7] is
0 1 0
0 0 1
—bk, —bk, —b,

For the calculus of coefficients b

0
+]0|(b,v, b,V —¢). (45)
1

<<t <t
Il
<l <<

0Ky, K, , one sets

values for the roots of the characteristic equation

s” +bys® +byks +bk, =0; (46)
that means to set the coefficients of this equation to
be Visnegradski type; b, =1.
From the expression of the control law and (12) it
results that the linear dynamic compensator has
order 1 with only a state variable S=y=e. As a
consequence, conform to equation (17), one

ACTUATOR

+—*= REFERENCE

MODEL

(39)

NEURAL NETWORK

Fig.3. Block diagram of the system for automat command of the pitch angle

yields ET =e' :[7 ¥ ﬁ],K:(A—dcbc) and (45)
has the form (18) and z=CE =ce=Y. The state
estimator is described by equations (19);
E =6,72=6. Gain L is calculated so that matrix

A=(A-LC) is stable.

The component Vv, is calculated using the equation
v, =WV n) (47)

with W and V having the form (22) and the input

ISSN: 1790-5117

vector 1 of form (28) with components (29);
n,=n=6,r=3d=0.05T, =23,T,=12.5,k=0.115;
matrices P,P are the solutions of equations (24);

N =l v vit-d) wit-2d) v yt-d) yt-2d))(48)
Function o is obtained using (23) and z =V Tn.

The component V is obtained using (7) and
k, =0.8,k, =0.7,Z =50. For the calculus of ¢ with

(41) the other state variables (Vx,Vy,VZ,ES) and the
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derivates (\/'X v, ,[3) must be known. The first, the
forth and the fifth equations (33) lead to
V, =XV, + X0+ X0+ X B+ XV, + X3,
B=B,V, —0+Bp+B3,
V,=ZV, +Z0+Z,0+ZB+ZV, +Z3.
The values of the coefficients from (33) are
X, =-0.0553, X, =1.413,X, =—32.1731, X, =~19.9033,
X, =0.0039,M, =0.2373,M , =—6.9424,M, = 68.2896,
M, =0.002,B, =0.0101,B, =-2.1633,Z, =-0.0027,Z
,=—0.0236,Z, =—0.2358,Z, =—0.1233,Z,, =—0.5727,
X, =11.2579,M, =—-38.6267, B, =—4.2184,Z =0.0698,
M, =0.5M,,M  =2M_,t=0.05.
For the calculus of & equation (32) is used,
with &, of form (41). The previous equations system

(49)

(49) is equivalent with the following one

Vol [ X X, X V] [ Xe X, Xg|[6
Bl=|B, B, OB+ 0 -1 B |6 (5O
Vv, Z, ZB Z, Vv, Z, Zq Z; || o
With this one (41) becomes
V)(
e=(M,+20,)M, M, M, MS]\E +M, M, M, )
. (51)
X X Vil T x
u B w q 0 q
B, B s P + 0 -1 {e} _M,
Vv, 0 T
z z zZ, Z

The block diagram of the reference model is the
one presented in fig.4 and the block diagram of the
system for automat command of the pitch angle is
presented in fig.3.

17k, =3

r Vi 4
Voo Vo — . S N i y ]
—HE) QST TS W/ W ) ) B U [ LA N ) o
@20 LT AT -{T]
[ B0Emy =

) + 25w P

Fig.4. The block diagram of the reference model

Actuators’ characteristics (time delays, nonlinea-
rities with saturation zone) lead to adapting diffi-
culties of the neural network. This is why a block

“PCH” is introduced; it limits the adaptive pseudo-
control v, and v by the mean of one component
which represents an estimation of the actuator’s
dynamic (PCH — Pseudo control Hedging). PCH
“moves back the reference model” introducing a
correction of the reference model’s response; this
correction depends on actuator’s position [3], [9].

Because the dependence between & and . is

expressed by a non-linear function h,, one yields
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h, (x,8,) = h, (x,8); (52)
it results a difference between the two functions
v, =h (x,8,)—h,(x,8); (53)
Taking into account that
h, (x,8,)=h, (x, h' (x,v)): v, (54)
function (53) becomes
v, =V —h (X,5). (55)

This signal is introduced in the reference model as
an additional input [3]; one compares it with §”
inside of the reference model and, after integration,
it will lead to the modify of the signals y and V.

The block diagram of the subsystem formed by (55)
and actuator is presented in fig.5.

ACTUATOR.
" 5, s~ [T pun I i s [
Sy e \l_ o __‘_ll —f Ve s i) )
D=1t AT AT e
x

Fig.5. The model of the non-linear actuator

In the case of non-linear actuator for the case of
the longitudinal movement of the helicopter
(equation (33)), the system from fig.3 includes the
model of non-linear actuator (fig.5), in which x =6;
the block of calculus for (32) is replaced with the
subsystem from fig.5. One choose T =0.03s and the

control limits in position and speed of the actuators
5grd, respectively 50grd/s [9].

In fig.6 Matlab/Simulink model for the structure
from fig.3 is presented; one has chosen 6, =5grd.

Fig.6. Matlab/Simulink model
for the structure from fig.3

In fig.7 the functions 8(t),0(t),e(t),V, (t),5(t),5(t) and
v(t) (8,68
color) are presented. If the actuator is a linear one
60— 0,0, >¢ (the adaptive component of the

with blue color and 0,V .8 with red

sVaos

command compensates h, approximation’s error),

85 and v—0.
If the actuator is non-linear one obtains the
characteristics from fig.8; additionally, characteris-
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tics v, (t) and 6(0) appear. When v, =0 the actuator
is in the saturation state and it works in the linear
zone when v, #0. The characteristic 6(0) (phase

portrait of the system) shows that the non-linear
system tends to a stable limit cycle.

L]
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8,8 [ged] 2
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o
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&.5[ard] 1}/
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v[grd] 05

0
2]

25 0%

S T ! I T
i[s]
Fig.7. Time characteristics in the case of

linear actuator’s use (r=3)

o % @ B % ®
8[zrd)

Fig.8. Time characteristics in the case of
non-linear actuator’s use (r =3)

4 Conclusion

The aim of the adaptive command is to
compensate the dynamic inversion error. Thus, the
command law has two components: the command
given by the linear dynamic compensator and the
adaptive command given by the neural network. As
control system one chooses the non-linear model of
helicopter’s dynamics in longitudinal plain. The
reference model is linear. One obtains the structure
of the adaptive control system of the pitch angle
and Matlab/Simulink models of the adaptive co-
mmand system’s subsystems. Using these, some
characteristics families are obtained; these describe
the adaptive command system’s dynamics with
linear or non-linear actuator.
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