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Abstract: - The paper presents complex adaptive non-linear systems with one input and one output which are 
based on dynamic inversion. Linear dynamic compensator makes the stabilization command of the linearised 
system using as input the difference between closed loop system’s output and the reference model’s output 
(command filter). The state vector of the linear dynamic compensator, the output and other state variables of 
the control system are used for adaptive control law’s obtaining; this law is modeled by a neural network. The 
aim of the adaptive command is to compensate the dynamic inversion error. Thus, the command law has two 
components: the command given by the linear dynamic compensator and the adaptive command given by the 
neural network. For estimation the dynamic compensator’s state, the non-linear adaptive controller may have a 
linear reduced order observer. As control system one chooses the non-linear model of helicopter’s dynamics in 
longitudinal plain. The reference model is linear. One obtains the structure of the adaptive control system of 
the pitch angle and Matlab/Simulink models of the adaptive command system’s subsystems. Using these, 
some characteristics families are obtained. These describe the adaptive command system’s dynamics with 
linear or non-linear actuator. 
 
Key-Words: compensator, neural network, dynamic inversion. 
 
1 Introduction 

The complexity and incertitude that appear in 
the non-linear and instable phenomena are the main 
reasons that require the projecting of non-linear 
adaptive structures for control and stabilization; in 
these cases the linear models are far from a good 
describe of the flying object’s dynamic. Another 
reason is the non-linear character of the actuators 
(because of the saturation and/or their displacement 
velocity). The observers must be easily adaptable 
and their project algorithms must allow the 
estimation of the state of the flying object even in 
the case of their failure or no use of the damaged 
sensors’ signals. In these situations it’s good to use 
the real time adaptive control based on neural 
networks and dynamic inversion of the unknown or 
partial known nonlinearities from the dynamic 
model of the flying object [1]. The train of the 
neural networks is based on the signals from state 

observers; these observers get information about the 
control system’s error [2], [3], [4].   
 
 
2 Dynamic SISO systems 

Let’s consider the dynamic system (A) with 
single input and single output (SISO) described by 
equations 
  ( ) ),(,, xhyuxfx ==&  (1) 
with ( ) −× nnx ,1  unknown  and  unknown 
nonlinear functions, u  and  measurable. 

f
−y

−h

One projects an adaptive control law  after (in 
rapport with) the output; the neural network (NN) 
models a function that depends on the values of 
input and output of A at different time moments so 
that 

v

( )ty  follows the finite .)(ty  The feedback lineari-
zation may be made through transformation [5] 

   (2) ( ),,ˆ uyhv r=
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with  is the pseudo-command signal and  
the best approximation of  

v −),(ˆ uyhr

( ).u( ),),( yxhuxh rr =
Equation (2) is equivalent with the following one 
 ( ) .,ˆ 1 vyhu r

−=  (3) 

If  one yields  otherwise ,ˆ
rr hh ≡ ;)( vy r =

( )rr hh ≠ˆ  
  (4) ,)( ε+= vy r

where  
 ( ) ( ) ( uyhuxhux rr ,ˆ,, −=ε=ε )  (5) 
is the approximation of function  (inversion 
error). Assessing  to follow 

rh
y ,y  then  has the 

form [5], [6], [7] 
v

 ,)( vvvyv apd
r +−+=  (6) 

where  is the output of the dynamic linear 
compensator for stabilization, used for liniarised 
dynamic (4), with 

pdv

−=ε av,0
ε

 the adaptive command 
that must compensate  and v  has the form [8] 

 ( ) ,ˆˆ EE
E
E

vFz kZZkv ++=  (7) 

with  gain constants, 0, >vz kk −
F

Ẑ  the Frobenius 

norm of matrix −ZZ ,ˆ  the ideal matrix of the neural 
network and ,ˆ BPEE =  with  and P,Ê −B  
matrices. The derivative )(ry  is introduced for the 
conditioning of the dynamic error .~ yy −y =  This 
derivative is given by a reference model (command 
filter) [5]. )(ry  may be cumulated with other signals 
and it results the component  of form (11). rv

Considering 

      (8) [ ] [
[ ] [ ],,

,,

10110

)()1(

p
T

r
T

pTrT

bbbb
vvvZyyyY

LL

K&K&

=λλλ=λ

==
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− ]

with 1,0,,,0, −=λ= rjpib ji  the coefficients of the 
numerator and denominator of the transfer function 
for the system with input  and output  the nu ,y
linear system with input v  and output  is des-
cribed by equation  

y

  (9) .)( ε++λ−= ZbYy TTr

If  then  and the previous equation 
becomes 

,0=p 0, bbvZ ==

  (10) .0
)( ε++λ−= vbYy Tr

In the particular case ,)()( rr yy =  one obtains 

 ( .1 )(

0

Yy
b

v Tr
r λ+= )  (11) 

The compensator may be described by state 
equations 

  (12) 
,

,
edcv

ebA

ccpd

cc

+=
+=
ς

ςς&

where ς  has at least dimension ( )  ,1−r
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 (13) 

The state equation of the linear subsystem with input 
( )ε+v  and output  is y
 ( ) ,, vvvvvbxAx apd +−=ε++=&  (14) 
where 

  (15) .
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The stable state ( )0=ε== vxx &  verifies equation 
0=xA  and, taking into account (14), leads to the 

equation of the error vector ,~ xxx −=≡e  
 ( .ε−−+ )−= vvbbvA apdee&  (16) 

With notations 
  ,

0
0

,
0

,, ⎥
⎦

⎤
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⎡
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I
c
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b
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bcbcdA

A
cc

cc

ς
e

E  (17) 

where I  is the identity matrix with the ς ’s dimen-
sion, one obtains 
 ( ) ;, EEE CzvvbA a =ε−−+=&  (18) 

cccc dcbA ,,,  from (12) are calculated such that A  be 
a Hurwitz matrix. 

For the estimation of the error vector E  one 
may use a linear state observer of order ( )1−2r  
described by equations 

 ( ) ,ˆˆ,ˆˆˆ EEE CzzzLA =−+=&  (19) 
with the gain matrix  calculated so that matrix  L

( )CLAA −=
~  is stable. Considering  the sensor 

measure error, 
−w

−my  the measured value of  then ,y
wyyyy mm +~= − =~  and the compensator’s equations 

become 
        ( ) ., HwCzGwvvbA a +=+ε−−+= EEE&  (20) 
with [ ] [ ].,01 cc

TT bbdGH −==   
If state  of the compensator is known, one uses a 
reduced order observer for estimation of vector  

ς
e

 ( ) .ˆ,ˆˆˆ 111 eee czzzLA r =−+=&  (21) 
The gain matrix  is obtained so that matrix rL

( )cLAA r−=
~  is stable. With vectors  and  vector ê ς

[ ]ςeE ˆˆ =T  is obtained. 
The signal bPTEE ˆ=  is used for neural 

network’s adapting; the weights W  and V  are 
obtained with equation  

ˆ ˆ
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        ( ) ( )[ ]
( )[ ],ˆˆˆˆ2ˆ

,ˆˆˆˆˆˆ2ˆ

0

0

VVkBPV

WWkBPVW
T

V

TT
W

−+σ′ηΓ−=

−+ησ′−σΓ−=

E

E
&

&
 (22) 

where the role of B  is played by .b  In (22) σ  is the 
sigmoid function 

 ( ) ,
1

1
aze

z −+
=σ  (23) 

0
dz

)(ˆdˆ
zz

z

=

σ
=σ′  is the Jacobian of vector ,ˆ Wσ d 0̂V  

 initial values of weights W  

0
ˆ  

,,ˆ ΓWV

an

the ,0,ˆ >ΓV

( ) ,~,,2 21121

22
1

2
1 BPBPkBPkkBPkk +=γ+α=γ+>  

P  and −P~  the solutions of Liapunov equations 
 .~~~~~, QAPPAQAPPA TT −=+−=+  (24) 
P  from the signal used for the neural network’s 
adapting is the solution of first equation (24) with 

( ).bcdAA c−=  
Second output of the compensator ( )ay~  is used for 
obtaining of an error signal that is useful for 
adapting of the neural network’s weights.  

From (4) and (6) one yields 
 ,)()( ε++−+= vvvyy apd

rr  (25) 
equivalent with the dynamic error’s equation 
 .~ )( ε−−+−= vvvy apd

r  (26) 
 

 
Fig.1. Automat control system with  

non-linear adaptive controller 
 

According to (26) and fig.1, it results the block 
diagram for the dynamic error’s modeling (fig.2). 

Error  may be approximated with the output  
of a linear neural network NN [5] 

ε

 ( ) ( ) ,, *μ<μημ+ηΦ=ε TW  (27) 
where  is the weights’ matrix for the connections 
between layer 2 and layer 3 (NN has 2 layers), 

 the reconstruction error of the function and 
 the input vector of NN 

W

( ) −ημ
−η

 [ ,)()(1 TT
d

T
d tytv=η ]  (28) 

where  

     ( ) ( )( )[ ]
( ) ( )( )[ ,1)()(

,1)()(

1

1

TT
d

TT
d

dntydtytyty
drntvdtvtvtv

−−−=

−−−−=

L

L

]
 (29) 

with   and  is projected so that nn ≥1 avd ;0>

  (30) ( ),ˆ ηΦ= T
a Wv

where W  is the estimation of  ˆ .W

 

 
Fig.2. Block diagram of the dynamic  

error’s modeling 
 

 
3 Adaptive system for the helicopter 

pitch angle command 
Lets’ consider the case of nonlinear dynamic of 

an experimental helicopter R – 50 with one input 
and one output; its dynamic is (1) with  

 [ ] ,,, θ=δ=βθω= yuVVx zyx
T
e  (31) 

where  are the advance velocity, respectively 
the vertical velocity, 

zx VV ,
θ  and  the pitch angle and 

the pitch angular velocity,  the longitudinal 
control angle of the main rotor,  the cyclic 
longitudinal input. Choosing the linearised model of 
helicopter [9] and, annexing the actuator’s equation 

−ω y

−β
−δ

  (32) ,cδ=δ+δτ&

the new state vector [ ],δβθω= zyx
T
e VVx  

input ,cu δ=  output θ=y  and state equation are 
obtained 
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(33) 

From (33) one yields 
., δ++β+θ+=θ=ω=θ= δβ MVMMMVMyy zwqxuy

&&&&&&& (34) 
In order to relieve the non-linear function 

( ) ( ),,, crr xhuxh δ=  one must express an equation that 
contains .cδ  By derivation of the second equation 
(34) and substituting  and  from (32) it yy &&&&& =θ=ω δ

results 
  .czwqxu

MMVMMMVMy δ
τ

+δ
τ

−+β+θ+=θ= δδ
β

&&&&&&&&&&&  (35) 

So, this equation may be completed with a non-
linear component so that (35) has the form 

 ( ) ;
d
d,,)(

r

r

rr
r

t
hhurhy

Δ

==  (36) 

It results .3=r  The control system has the form 
from fig.1. One chooses the reference model 

                ( )( )
.rad/s10,7.0,25

,
s2ss

00

2
000

2

2
0

=ω=ξ=
ω+ωξ++

ω
=

r

c
rr

r

p

y
p

p
y  (37) 
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nu  The transfer function for the system with input 
 has the form 

 ( .1
0

0

yby
b

vr
&&&&& += )  (42) 

yand output 

                  ( ) ( );bsss
s

0
22

2 +
=H d  (38) 

 .02 b=λ  According to (8) 

By choosing for the compensator a proportional - 
derivative control law ,~~ ykykv dppd

&+=  the law (6), 

in which the role of )(r ,rv
s

0
3

0

λ+
=

bb

One has chosen it results 
 (9) bec

 
0, 10 =λ=λ= v

y  is played by  becomes 
Z omes  and equation

.0 ε+0 +−= vby&&&  (39) 
By elimination of θ= &&&&y  bet

 ;1~~
0

vvyy
b

ykykv adp +−+++= &&&&&&  (43) 
yb &&

Taking into account (4) and (43) it results ween the second 
ation (34) and (35) one yields  

     

        ( ).~~~~
00000 ε−−+−−−= vbvbybykbykby adp

&&&&&&  (44) equ

( ) .2θ+δ++β++ δβ
&

qzwxuq MMVMMVM

eplacing y&&  given by the second equation (34) and 
y&&&  given by (40  in (39) one may ident

+δ
τ

+δ
τ

−+β+=θ= δδ
β

&&&&&&&&& czwxu

M

MM
VMMVMy  (40) 

R
) ify  and  v ε  

: 1) v  mu  as 

The system that describes the dynamic of the 
error [ ]yyyT &&& ~~~=e  is 

follows st have the form ( ) == uxhv r ,  
( ),, cr xh δ=  where [ ];θθθ= &&&Tx rh  depends on 

some of state vector’s compo s on 
the othe

nents; 
s that contain ,, βzx VV

2) 
,,δ
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.,&x VV
epe

,β&&
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For the calculus of coefficients  one sets 
values for the roots of the characteristic equation 

,,,0 dp kkb

                       (46) ;0sss 00
2

0
3 =+++ pd kbkbb

obtains 

         
( )[ ] ( )

( )( )
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1
00

δ
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that means to set the coefficients of this equation to 
be Vîşnegradski type;   .10 =b

−+ Vzw
&
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]  and 

From the expression of the control law and (12) it 
results that the linear dynamic compensator has 
order 1 with only a state variable .~ eyS ==  As a 
consequence, conform to equation (17), one 

δ

 
00 b [ ],yyyY T &&&=  with 

(11) one obtains 

 
Fig.3. Block diagram of r automat command of the pitch angle the system fo

yields 
 

[ ] ( )yyTT == ~~ &eE  and (45) 
has the form (18) and 

bcdAAy c−=,~&&

.~ycCz === eE  The state 
is de cribed by equations (

vector η  rm (28) with components (29); of fo
;  115.0,5.12,23;05.0,3,61 ==Γ=Γ==== kdrnn vw

tions (24); matrices PP ~,  are the solutions of equaestimator s 19); 
alculated so that matrix 

he component is calculated usin

.ˆˆ,ˆˆ ez == eE  [ ].)2()()()2()()(1 dtydtytydtdtvtvT −−−−=η (48) Gain L  is c v

( )LCAA −=
~  is stable.  Function σ  is obtained using (23) and .ˆ η= TVz  

The component v  is obtainT g the equation av  
 ( ),ˆˆ ηTT

a VW σ=v  (47)
put 

 
ed using (7) and 

.50,8.0 == kk vz  For the calculus of ,7.0= Z ε  with 
(41) the other state variables ( )δ,,, zyx VVV  and the with Ŵ and V̂  having the form (22) and the in 
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derivates must be known. The first, the 
and s (33) lead to 
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For the calculus of δ  equation (32) is used, 
with (41). The previous equations system 
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The block diagram of the reference model is the 
one presented in fi
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g.4 and the block diagram of the 
system t command of the pitch angle is 
presented in fig.3. 
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Fig.4. The block diagram of the reference model 

 

Actuators’ characteristics (time delays, nonlinea-
rities with saturation zone) lead to adapting diffi-
culties of the neural network. This is why a block 
“PCH” is introduced; it limits the adaptive pseudo-
control av  and v  by the mean of one component 
which represents an estimation of the actuator’s 
dynamic (PCH – Pseudo control Hedging). PCH 
“moves back the reference model” introducing a 
correction of the reference model’s response; this 
correction depends on actuator’s po ion [3], [9]. sit
Because  between  the dependence δ  and cδ  is 
expressed by a non-linear function ,ah  one yields 

;)ˆ,(ˆ),(ˆ δ≠δ xhxh rcr

it results a difference betw
 ( ) ;)ˆ,(ˆ,ˆ δ−δ= xhxhv rcrh  (53) 

t Taking into account tha
 ( ) ( )( ) ,v=  (54) ,ˆ,ˆ,ˆ 1 vxhxhxh rrcr =δ −

function (53) becomes 
 .)ˆ,(ˆ δ−= xhvv rh  (  
This signal is introduced in the reference model as 
an additional input [3]; one compares it with 

55)

)(ry  
inside of the reference model and, after integration, 
it will lead to the modify of the  and .~y  signals y
The block diagram of the subsystem formed by (55) 
and actuator is presented in fig.5. 

 

Fig.5. The model of the non-linear actuator 
 

In the case of non-linear actuator for the case of 
the longitudinal movement of the helic  
(equation (33)), the system from fig.3 includes the 
model of non-linear actuator (fig.5) h ;θ= &x  
the block of calculus for (32) is replaced with the 

stem from fig.  choo

opter

, in whic

subsy 5. One se

In fig.6 Matlab/Simulink model for the structure 
from fig.3 is presented; one has chosen 

 s03.0=T  and the 
control limits in position and speed of the actuators 

,grd5  respectively grd/s50  [9]. 

grd.5=θc  

 
Fig.6. Matl

or the structure from fig
In fig.7 the functions 

ab/Simulink model  
f .3 

( ) )(),(ˆ),(ˆ),(,),( tttvttt a δδεθθ  and 
)(tv  ( −δεθ ˆ,,  with blue color and δθ ,ˆ, av  with red 

color) are presented. If the actuator is a linear one 
ε→av̂,θ  (the adaptive co ponent of the 

If t uato  one

→θ
com

m
mand compensates rh  approximation’s error), 
δ→δ ˆ  and .0→v  

he act r is non-linear  obtains the 
characteristics from fig.8; additionally, characteris-
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tics )(tvh  and  appear. When 0=hv  actuator 
is in the saturation state and it works in the linear 
zone when .0≠hv  The characteris

 ( )θθ& the 

 (phase 
portrait of the system) shows that the non-linear 
system tends to a stable limit cycle. 
 

tic θ&( )θ

 
Fig.7. Time characteristics in the case of  

linear actuator’s use ( ) 3=r
 

 
Fig.8. Time characteristics in the case of  

) 

 

tained; these describe 
 command system’s dynamics with 
-linear actuator. 
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3=r

4   Conclusion 
The aim of the adaptive command is to 

compensate the dynamic inversion error. Thus, the 
command law has two components: the command 
given by the linear dynamic compensator and the 
adaptive command given by the neural network. As 
control system one chooses the non-linear model of 
helicopter’s dynamics in longitudinal plain. The 
reference model is linear. One obtains the structure 
of the adaptive control system of the pitch angle 
and Matlab/Simulink models of the adaptive co-
mmand system’s subsystems. Using these, some 
characteristics families are ob
the adaptive
linear or non
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