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ABSTRACT 

The paper focuses on the dynamics and control of the non-deformable and deformable four-bar 

mechanism (three of the bars are mobile and one is fixed), this being a subsystem of the micromechanical 

flying insects’ thorax. The control of the mechanism (six order system described by Lagrange equations) is 

initially achieved by using a proportional-derivative control law, a Newton-Raphson type algorithm, and the 

Lyapunov theory. Because the thorax’s dynamics is strongly nonlinear and is characterized by fast time 

varying coefficients, the PD control law cannot always guarantee small overshoot and angular rates; to 

overcome this drawback, over the control law PD component we superpose a neural adaptive component 

which compensate the error of the global nonlinearity’s approximation associated to the thorax’s dynamics. 

The two obtained control systems are validated by complex numerical simulations. 
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INTRODUCTION 

The MFI (Micromechanical Flying Insect) type servo-mechanisms (servo-systems, 

servo-actuators) are physical models of the insects’ thorax. Such a servo-mechanism generally 

consists of three subsystems: the command subsystem (electric engine or piezoelectric 

actuator), the wing actuation equipment (the cinematic mechanism), and the controller. 

The most used command subsystems (equipment) are the piezoelectric actuators; these 

work together with mechanical transmission elements for the wing’s actuation, e.g. the four-

bar mechanism [1-11]. In recent years, the studies and researches have been developed and 

culminated in the development of efficient flying robots [2, 12-16], but, from our information, 

none of them has used both the dynamic inversion and forward neural networks in the 

design of the MFIs’ control; this is achieved in this paper, being interesting to see if such a 

control law can guarantee the control of the four-bar mechanism of the MFIs. Thus, our aim 

is to design new control systems for the control of the four-bar mechanism (subsystem of 

the micromechanical flying insects’ thorax); before the design process, we obtain the 

mathematical model (dynamics) of the four-bar mechanism by means of the Lagrange 

equations [17]. It will be shown that the dynamics of the four-bar mechanism is described 

by a nonlinear system having three equations which depend on three variables (the rotation 

angles of the mobile bars); one of the three variables (the rotation angle of the driving bar) is 

independent, while the other two are dependent on the first one. The states depending on 

the independent variable are calculated by using a Newton-Raphson type algorithm [18]. To 

obtain the parameters of the proportional-derivative control law, the Lyapunov theory is 

used; it will be shown that the dynamics of the servo-actuators is nonlinear and has fast 
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time varying coefficients, and, therefore, if the PD control laws lead to dynamic processes 

characterized by high overshoot and angular rates, the deformation and even damage of 

the four-bar mechanism may occur. As a consequence, from some points of view, a neural 

adaptive control which compensates the global nonlinearity would be a better choice. In the 

design of the neural adaptive control law, we use the dynamic inversion technique and neural 

networks. The adaptive control law has two components: the role of the first one is to 

compensate the global nonlinearities (compensation of the dynamic inversion error), while 

the second one is useful for the control of the linear subsystem with respect to the driving 

bar angle [19-23]. 

The paper is organized as follows: the dynamics of the four-bar mechanism together 

with the calculation of the two dependent variables is presented in the second section; the 

design of the two control laws (proportional-derivative and adaptive) for the MFI’s control is 

presented in the third section; in the fourth section of the paper, complex simulations to 

validate the proposed automatic control systems have been performed and analyzed; 

finally, some conclusions are shared in the fifth section. 

DYNAMIC MODEL OF THE FOUR-BAR MECHANISM 

Conventional rigid body four-bar mechanism 

The four-bar mechanism is a subsystem of a MFI’s thorax. The four-bar mechanism 

has three mobile bars (all considered to be rigid).  The structure of such mechanism is 

presented in Fig. 1; each of the three mobile bars is considered rigid [10]; the only fixed 

bar is denoted in Fig. 1 with AD; 3,1, =iri

C
 are the position vectors associated to the 
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mobile bars’ mass centers (the bars have the masses mi), 4,1, =il i  are the position vectors 

associated to the joint B with respect to A, joint C with respect to B, joint D with respect to 

C, and joint D with respect to A; 3,1, =d ii  express the angular positions of the ir
C

 with 

respect to the position vectors ;il  ,4,1, =q ii  are the angular positions of il  with respect to 

the reference axis Ox of the coordinate system Oxy. The coordinates of the mobile bars’ 

mass centers with respect to the Oxy reference system are 
ii yx , . The local coordinates’ 

systems 
332211 ,, hxhxhx DBA  are connected to the mobile bars. The Cartesian coordinates 

of the mobile bars’ mass centers can be expressed as functions of following angular 

coordinates: 
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By using the previous equations, the velocities of the mobile bars’ mass centers with 

respect to the Cartesian system (for =q4  constant) are obtained as following: 
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and ,3,1,, 11 =q=q= ivVuV iiyiix
##  respectively, with 
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Thus, the dynamics of the four-bar mechanism is described by three equations which are 
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nonlinear with respect to three variables (the rotation angles of the mobile bars); one of 

the three variables (the rotation angle of the driving bar) is independent, while the other two 

are dependent on the first one. The non-dimensional variables iu  and iv  can be obtained 

starting from the equation which describes the connection between the four-bar, i.e. [17]: 

;4321 llll
CCCC
=-+  if this equation is projected on the Cartesian system’s axes, one gets: 

 ,sinsinsinsin,coscoscoscos 4433221144332211 q=q-q+qq=q-q+q llllllll  (4) 

and, by differentiating ( =q4  constant), respectively: 
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The equations (4) express the fact that only the coordinate 1q is an independent variable, 

while the other two depend on this variable; () ()., 133122 qq=qqq=q  Similarly, the 

equations (5) express the fact that only the angular rate 1q
# is independent, while 2q

# and 

3q
# depend on ;1q

#  now, by solving the system (5) with respect to the unknown variables 

122 /qq= ##w  and ,/ 133 qq= ##w  one yields: 
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To determine the four-bar mechanism dynamical model, one uses the Lagrange equation 
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where K is the total kinetic energy, P - the potential energy, D - the dissipated energy; 

()1q=PP  has two components: ()-q1gP  the potential energy of the mechanism having 

non-deformable bars and ()-q1tP  the potential energy due to torsion, 
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  () () () () ( ) () ,,, 113322111111 q-=q++=qq+q=q qMPymymymgPPPP tgtg  (8) 

with 3,1, =iyi  having the forms (1) and -qM  the torsion moment (torque) of the bar 1. 

 The total kinetic energy of the four-bar mechanism has the expression [10]: 
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where iJ  represents the inertia moment of the bar “i” with respect to the axis which is 

rectangular on the Oxy plane and passes through the mass center of the bar “i”; the 

components ixV  and iyV  are described by equations (2) and (3). With these, (9) becomes: 
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with .1q=q  To obtain the equivalent inertia moment (),qJ  the variables 3,1,, =ivu ii
 

are expressed with respect to the local coordinates ii hx,  as follows: ,cos iii r d=x  

.sin iii r d=h  With these, the variables 3,1,, =ivu ii  becomes: 
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replacing these forms in (10), one gets: 
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Taking into account equations (8) and (1), the third term in (7) becomes: 
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 (15) 

where ( ) ( )[ ] ( ).cos,coscos,cos 333322221211110 d+q=d+q+q=d+q= grmGrlgmGgrmG  If the 

dissipated energy D is not taken into account, the equation (7) gets the form: 
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 Four-bar mechanism having two elastic bars 

 The diagram of the mechanical model associated to the mechanism with four bars, 

taking into account the elastic deformations of the bars 1 and 3 (AB and CD), is presented 

in Fig. 2 [3]; in this figure, ,, *

2

*

1 mm  and *

3m  are the mobile bars’ equivalent masses, 

-= 4,1, il i  the lengths of the four bars which interact with the elastic and dissipative 

external environment (atmospheric air); the interactions are modeled by elastic and 

damping elements having the elasticity coefficients 31 ,kk  and the damping coefficients 

.,, 31 wbbb  The geometric elements ,,, iii rdq  and il  from Fig. 1 become here ,, 21 f-=qq=q   

;,,0,,0,0, 331132143 lrlr ===db=d=d=qy=q  d1 and d3 express the position of the 

four-bar mechanism (bars 1 and 3 are elastically deformable) with respect to the mechanism 

having four rigid bars. Corresponding to the displacements d1 and d3, the angular position 

of the mechanism with two deformable bars with respect to the one having only rigid bars 
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is expressed by means of the angles 0

~
q-q=q  and 0

~ y-y=y  (q0 and y0 are the values of 

the angles q and y, respectively, for the mechanism having four rigid bars).  

 The wing of MFI is attached to the slide (bar) FE. The mass center of the ensemble 

BC bar – FE slide – wing is situated near the middle of the FE slide and it has the position 

vector ;2r  
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where 222
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2 ,mmmmmmm ww +@++= f  is the BC bar’s mass, -fm  the FE slide’s mass, 

and -wm  the wing’s mass; () ./tan 2lla@b  
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The potential energy has the form (8), i.e.: 
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1 mmmmt ++=  The dissipated energy is expressed as follows [3]: 
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The dynamic model of the four-bar mechanism, having two elastically deformable bars 

(AB and CD), described initially by the Lagrange equation (7), replacing P  with ,*P  is now: 
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where θ2= - f and θ2=y. Thus, the variable q represents the solution of the nonlinear equation 

(23), while the variables f = f(q) and  y = y(q) are the solutions of the system (4), where 

;0,,, 4321 =qy=qf-=qq=q #  the system (4) becomes: 

 ( ) ( ) .0sinsinsin,,0coscoscos, 132241321 =q+y-f-=yf=-q+y-f=yf lllfllllf  (24) 

 The solving of the system 

 To solve the system (24), a Newton-Raphson type algorithm [18] is used. Thus, 

starting from the approximate solution ( ),, 000 yf=x  the solution associated to the step 

( )1+k  is calculated: ,,...1,0,, 11 =yD+y=yfD+f=f ++ kkkkkkk  where (),kk xf=f  

( ),kk xy=y   and ( )kkkx yDfD=D ,  form the solution of the linear system: 

  ( ) ( ) ( );,, 21 fffxfxxI kkk =-=D  (25) 
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above, I  is the Jacobian associated to the system (24), i.e. ()
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the index kx  expresses that the partial derivatives are calculated as functions of 

( )., kkkx yf=  The solution of the system (26) is: 

     .,, 21211
2

2
1

1
2

2
1

kkk xx

k

x

k

fffff
f

f
f

f
f

f
f öö

÷

õ
ææ
ç

å

fµ

µ

yµ

µ
-

yµ

µ

fµ

µ
=DDöö

÷

õ
ææ
ç

å

fµ

µ
+
fµ

µ
-=yDDöö

÷

õ
ææ
ç

å

yµ

µ
+

yµ

µ
-=fD  (27) 

The functions ( ) ( )kkk fxf yf= ,11  and ( ) ( )kkk fxf yf= ,22  are expressed by means of (24), 

i.e. () () .sinsinsin,coscoscos 132241321 q+y-f=-q+y-f= lllxfllllxf kkkkkk  

The expressions of the partial derivatives ( )kxf1  and ( )kxf2  are, respectively: 
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For each value of the angle (),tq=q  the functions ( ) ( )kk xfxf 21 , , as well as their derivatives 

are determined. These are replaced in (27) and there are obtained kfD  and ;kyD  then, by 

using the equation ,,...1,0,, 11 =yD+y=yfD+f=f ++ kkkkkkk  one obtains 1+fD k  and 

.1+yD k  The number of iterations ()k  is limited by the imposed calculation error .d The 

solution is the one which verifies the error conditions d<1f  and .2 d<f  First of all, one 
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must establish the variation limits for the angle q and the geometric dimensions of the 

four-bar mechanism with respect to the beat angle f range of variation. According to Fig. 

3.a, for ,,, 141213 llllll c=m==  the equilibrium value of the angle q is described by equation 
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 while, according to Figs. 3.b and 3.c, by means of the cosine’s 

theorem, one gets:  

  

()
( )

( )
( )
( ) ( )

( )
( ) ( ) ( )

.
2

2

2

11

2
cos

;
12

2

12

11

2
cos

2222

41

2

32
2
4

2
1

2

2222

421

2
3

2
4

2

21
1

c

m+m-c
=

c

m+-c+
=

+-+
=q

cm+

c+m+m
=

cm+

-c+m+
=

+

-++
=q

ll

llll

lll

llll

 (29) 

2min qD=qD  and 1max qD=qD  express the limits (min and max) associated to variation of 

the angle q with respect to the equilibrium value ;0q  the convergence of the Newton-

Raphson type algorithm is conditioned by the choice of 
0q  and the value of qD  which must 

be between 2qD  and .1qD  One presents below an example for the numerical calculation of 

the bars’ rotation angles ( );,, yfq  this will be later incorporated in the block diagram of 

the whole control system for the automatic control of angle .q  

 Numerical example 

 For 2.0=m  and ,7.0=c  using the last expression of ( )0cos q  and the equations (29), 

one gets: ,deg13.19,deg96.87,deg389.56 ,deg52.75 101210 =q-q=qD=q=q=q  

.deg44.12202 -=q-q=qD  Thus, bar 1 oscillates from one side to another of the 

equilibrium position ( )0q  with [ ][ ] .deg13.1944.1212 -=qDqDÍqD  

 For the calculation of the angles f and y as functions of the input angle ,q  the 
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nonlinear system (24) is solved with the Newton–Raphson method, imposing: 

  ( ) ( )( ) ,deg1002sin1252.752sin0 tft Öp+=pqD+q=q=q  (30) 

error ,10 3-=d  and the approximate initial solution ( ) ( ) =q-=yf= deg180,0, 0000x  

( ) .deg104.48,0=  We software implemented the above mentioned algorithm based on 

the Newton-Raphson method and obtained the characteristics in Fig. 4. 

DESIGN OF THE SERVO-MECHANISMS’ CONTROL 

The automatic control of the variable f (the beat angle of the insects’ wing) may be 

indirectly achieved by means of the independent variable q control (the rotation angle of 

the driving bar). The variables ()qf  and (),qy  as solutions of the nonlinear system (24), are 

obtained within the block 1 of the structures in Figs. 6 and 7, respectively; this is done by 

means of the algorithm based on the Newton - Raphson method. Also, in this section, the 

control of the four-bar mechanism is done, beside the usage of a proportional-derivative (PD) 

control law, by means of an adaptive control law based on dynamic inversion and neural 

networks; the control law has two components: the former is for the global nonlinearities’ 

compensation (compensation of the dynamic inversion error), while the latter is a PD control 

law which is useful for the linear subsystem control with respect to the driving bar angle [19-

23]. The adaptive control law design is achieved in the second sub-section of this paper’s section. 

Design of the control system with proportional-derivative control law 

The mathematical model of the MFI’s thorax is a 6 order system, having the state 

vector [ ].
T

x yyffqq= ###  If the control law is proportional-derivative and it 

depends on ,q  it will be shown that the stationary error eq  is null and the stabilized 



Journal of Dynamic Systems, Measurement and Control 

13 

 

vale of the angular rate q# is also null; accordingly, f and y are stabilized. Also, 2w  and 

3w  are stabilized; q-=f ##
2w  and q=y ##

3w  will be stabilized to zero. Thus, we intend to 

prove that a PD control law with respect to q stabilizes both the variables q and ,q# and 

the variables .,,, yyff ##  

The structure of the system for the automatic control of the angle q with PD control 

law is presented in Fig. 5. The thorax’s dynamics is composed of a four-bar mechanism and a 

piezoelectric actuator (acting on the bar 1 of the four-bar mechanism with the torque qM ) 

and it is described by the nonlinear equation (23). The output of the controller is a voltage 

which is applied to the piezoelectric actuator.  

Denoting with pk  and -dk  the proportional and the derivative gains of the control 

law which must stabilize the MVI’s flight ( )eedep kkM q-q=qq+q=q ,#  and taking into 

account the form (15) for (),qG  the equation (23) becomes: 

  ()
()

()( )
()

(),
d

d

2

1

d

d

2

1
tp

J
Fkk

J
J eedepee =qq

q

q
+qq++q+qq

q

q
+qq #######  (31) 

with () ()
()

() ().
d

d

2

1 2 q+qq+q
q

q
+qq= GF

J
Jtp

####  We must take into consideration that (),qJ  

()
(),,

d

d
q

q

q
G

J
 and ()qF  are bounded functions [10], i.e. there exist the positive constants 

,,,, 1321 gaaa  and 1h  such that ()
()

() () .,,
d

d

2

1
, 11321 hFgGa

J
aJa ¢q¢q¢

q

q
¢q¢   Imposing 

that the angular rate and the angular acceleration are bounded, i.e. ,1d¢q
#

 ,2d¢q
##  with 

1d  and -2d  positive constants, it results: 

  () .11

2

1322 ghddadatp +++¢  (32) 
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 In order to design the controller, one chooses a Lyapunov positive defined function 

expressing the system’s total energy; it has the form *10]: 

  () ( ) () () ,
2

1

2

1
, 22

eeepeee JkJVxV qqqe+q+qq=qq= ###  (33) 

with [ ] [ ]-qq==
T

ee

T
xxx #

21  the error vector associated to the system in Fig. 5. The 

Lyapunov function verifies the inequalities: ( ) ,, 21 xQxVxQx T

ee

T ¢qq¢ #  where 

.
2

1
,

2

1

22

2
2

12

2
1 ù

ú

ø
é
ê

è

e

e
=ù

ú

ø
é
ê

è

e-

e-
=

aa

ak
Q

aa

ak
Q pp  Because the Lyapunov function is positive 

defined, one imposes that xQxT

1  is positive defined, i.e.: 

  ( ) ( ) .0
2

1
det,0

2

1
tr 2

2

2

1111 >e-=>+= akaQkaQ pp
 (34) 

Similarly, in order that xQxT

2  is positive defined, the following conditions must be fulfilled: 

  ( ) ( ) .0
2

1
det,0

2

1
tr 2

2

2

2222 >e-=>+= akaQkaQ pp
 (35) 

Using the derivative of the function (33), by replacing eq
##  with the form (31), and taking into 

account the above presented bounds of ()
()

(),,
d

d
, q
q

q
q G

J
J  and (),qF  one gets: 

  () ,
3

313 xcxcxQxxV T ++-=#  (36) 

with ( )
( )

( )
.

2

2,,1

213

33311

2

1322

2

1

ù
ù
ù

ú

ø

é
é
é

ê

è

e--++
e

+
e

e
=e=+++e+=

adahkhk

Fkk
Qacghddadac

dd

dp

 The 

matrix 3Q  is positive defined if .0det,0tr 32133 >>e--+e+= QabahkkQ pd  This matrix 

can be brought to the form ,
0

0

2

1
3 ùú

ø
éê

è
l

l
=dQ  where 1l and 2l  are the eigenvalues of the 

matrix ,3Q  i.e. the solutions of the characteristic equation [18]: 
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  ( ) .0dettr 33

2 =+l-l QQ  (37) 

The equation (36) may be put under the form: () ,
3

3

2

21 xcxcxcxV +-¢#  where 

     ( )
( )( ) ( ) ( )

.
2

,min

222

2213

212

hkakhkadahkk
c

dpdpd +e+e-e-+-e+-+e+
=ll=  (38) 

From condition ,02 >c  one gets the equation ( ) ( )[ ] ( ),44 213 akdahkkhk pdpd +>+e-+  

which differs from the one in [19]. To the last equation, one must add the second 

condition (34), i.e. ./ 1

2

2

2 aakp e>  Thus, the parameters of the controller ( pk  and dk ) are 

chosen such that the following two conditions are met: 

  ( ) ( )[ ] ( ) .,44
1

2

2

2

213
a

a
kakdahkkhk ppdpd

e
>+>+e-+  (39) 

 Now, the last form of the function ()xV#  can be written as follows: 

  () ( ) ( )( ),2112

2

3 x-x-=+-= xxxcxcxcxxV#  (40) 

with 0;0
2

4
,0

2

4

3

31

2

22

2

3

31

2

22

1 <>
-+

=x>
--

=x V
c

cccc

c

cccc #  if ;21 x<<x x  this double 

inequality is verified if the conditions (39) are fullfilled. 

 In Fig. 6 we present the block diagram, with transfer operators, associated to the 

system in Fig. 5.  

Design of the control system with adaptive control law 

 Because the dynamics of the servo-actuators (servo-mechanisms, thorax) is 

nonlinear and has fast time varying coefficients, the usage of PD control laws leads to 

dynamic processes characterized by high overshoot and angular rates, this having 

implications on deformation and even damage of the four-bar mechanism. Thus, in this 
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paper, over the PD control law component, we superpose an adaptive component which 

must compensate the global nonlinearity (the equivalent of all nonlinearities) associated 

to the MFI thorax’s dynamics. According to Fig. 7, the global nonlinearities may be 

concentrated into the function ;e this represents the rh  function approximation error 

(dynamic inversion error). If the control law adaptive component compensates the signal 

,e then the component vpd (PD type) must compensate the deviation (error) of the 

equivalent linear system closed by negative unitary feedback after ,q  having on its direct 

way the linear dynamic compensator (PD type) and the linear subsystem of the MFI’s 

dynamics with relative degree 2=r  with respect to the variable .q 

 The dynamics of the MFI’s thorax is a system with one input and one output (SISO 

system) described by the equations: 

  ( ) (),,, xhyuxfx ==#  (41) 

with [ ]-qq=
T

x #  the state vector, f  and -h  nonlinear functions, generally unknown, 

-¹ qMu  the input, and -q=y  the output of the dynamics. System (41) satisfies the 

hypothesis in [22] and equations: 
() ( ) () ;0;0,0,

d

d
,, ¸

µ

µ
<¢=

µ

µ
===

u

h
ri

u

h
h

t

h
huxhy rir

r

r

rr

r   

this means that all derivatives () riy i <¢0,  do not depend on ,u  while the derivative 

()
r

r hy =  depends on ru ;  is the relative degree of system (41). In the case of the thorax’s 

dynamics, .2=r  We design a control law v̂  after the output q=y  which has an adaptive 

component av  provided by a neural network such that () ()tyty q=­  [23]; its form is: 

  ( ) ( ),ˆ,ˆˆ,ˆˆ
qq== Mhuyhv rr  (42) 
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where ( )uyhr
ˆ,ˆ  is the best approximation of the function ( ) ()( ) ( ).,,, uyhuyxhuxh rrr ==  The 

equations 
() ( ) (),

d

d
,, r

r

r

rr

r h
t

h
huxhy ===  and (42) are equivalent with the following ones: 

( ) ( ).ˆ,ˆˆ,, 11 vyhuvyhu rr

-- ==  If rr hh ¹ˆ  then 
() ;ˆ00 vbvby r ¹=  otherwise: 

  () ,ˆ,0 e+== vvvby r  (43) 

where ( ) ( ) ( )uyhuyhux rr
ˆ,ˆ,, -=e=e  is the approximation error of the function rh  (the 

inversion error), which acts like a disturbing signal of the system. Using the Taylor series 

expansion of the function ( )vyhu r ,1-=  around the pair ( ),ˆ,vy  one successively obtains: 

  ( ) ( ) ( )( ) ( )( ).ˆ,ˆ
ˆd

d
ˆ,

d

d
ˆ,ˆ, 1

ˆ

111 e+=+== -

=

--- vyh
v

uvyh
v

vyhvyhu rvvrrr  (44) 

Imposing that ,yy­  the signal v̂  can be chosen of form [19, 21]: 

  ,ˆ vvvv apd +-=  (45) 

where pdv  is the output of the linear dynamic compensator, used for the control of the linear 

subsystem (43), with -=e av,0  the adaptive command for the compensation of the error ,e 

while v  is a robustness component of the control law which may be calculated with a formula 

based on the Lyapunov’s theory [22]: 

  ( ,ˆ) E
E

E
E vFz

T kZZkv ++=  (46) 

with zk  and -vk  positive constants (gains), { } ;tr;
0

0 2
ZZZZ

V

W
Z T

F
¢=ùú

ø
éê

è
=  

F
Z  is the 

Frobenius norm of the matrix -ZZ ,  the norm of the ideal matrix associated to the neural 

network, -Ê  the estimation of the state E  ( Ê  is provided by a linear observer), BPT
EE ˆ=  

( -B  the input matrix of the linear subsystem, -P  the solution of a Lyapunov equation), 
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while W  and V  are the weight matrices associated to the neural network. To estimate the 

state vector E  of the system containing the dynamic compensator and the linear subsystem 

(with relative degree 2=r  and the transfer function is () ,)s/s 2

0bHd =  we use a linear 

observer described by the following equations [24]: 

  ( ) ,ˆˆ,ˆˆˆ EEE CLA eee =qq-q+=
#

 (47) 

with --= ABdAA c ,  the matrix associated to the linear subsystem, [ ],0dpc kkd =  and -L  

the gain matrix which is chosen such that the matrix ( )LCAA -=
~

 is asymptotically stable. 

The adaptive command av  is calculated by means of a Lyapunov function ( ),,VWVe  where 

Ŵ  and V̂  are the weights of the neural network NNc; the form of the signal av  is: 

  ( ).hs= TT

a VWv  (48) 

From the stability condition ,0<eV#  one gets the equation system [19, 24]: 

       ( ) ( )[ ] ( )[ ];ˆˆˆ2ˆ,ˆˆˆˆ2ˆ
00 VVkBPVWWkBPVW T

V

TT

W -+s¡hG-=-+hs¡-sG-= EE
##

 (49) 

in equation (49), s is the sigmoid function ()( )( )
0

d

)(d
,1

1

zz

az

z

z
ez

=

-- s
=s¡+=s  is the Jacobian 

of vector 0
ˆ,Ws  and -0V̂  the initial values of the weights Ŵ and ,V̂ -GG VW ,  positive 

constants, -ag+=g+a=ö
÷
õæ

ç
å g+> 1121121

22

1

2

1 ,,
~

,,2 BPBPkBPkkBPkk  positive constants, 

,ˆ BPT
EE =   while P  and ( )rrP ³

~
 are the solutions of the Lyapunov equations: 

  ;
~~~~~

, QAPPAQAPPA TT -=+-=+  (50) 

the vector  ( )[ ]111 ³+hn  has the form [24]: 

  [ ] [ ],...1ˆ1 121

T

n

TT

d

T

d IIIyv ==h  (51) 
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where ()( ) ( )( )[ ] ()( ) ( )( )[ ];1...,1ˆ...ˆˆˆ
11

TT

d

TT

d drntydtytyydrntvdtvtvv ----=----=  

121 ,,, nIII 2  are the inputs of the neural network.  

 Separating in (23) the linear components (constants) of ()qJ  and (),qG  this 

equation becomes: 

  ()
()

() () ( ),
1

'
d

d

2

1
'

1

0

2

0

q-+ö
÷

õ
æ
ç

å
q+qq+q

q

q
+qq-=q q kM

C
GF

J
J

C
######  (52) 

with () () 0CJJ -q=q¡  and () ()( ).2

11 q-q=q¡ lkGG  Now, identifying the terms in (52) with 

the ones in (43), where ,q=y  it results: 

  

( ) ( ) ( ) ( )

()
()

() ().'
d

d

2

1
'

;ˆˆ,ˆˆˆ,ˆˆ,ˆˆ,ˆˆ

2

1

ö
÷

õ
æ
ç

å
q+qq+q

q

q
+qq=e

q+-=q==q--=q== -

qqq

GF
J

J

kvvhMukMMhuyhv rrr

####
 (53) 

e is the approximation error which is obtained by means of the subsystem consisting of 

the blocks 1-6 in Fig. 6; .2

3

2

33

2

11 wlklkk +=  Now, taking into account (44) and the first 

equation (53), one yields: 

  .q+-== q kvMu  (54) 

In stabilized regime av  compensates the error e such that the system in Fig. 7 is equivalent 

to the linear system with negative feedback after ,q  having on its direct way the linear 

dynamic compensator and the transfer function () ,s/s 2

0bHd =  with ./1 00 Cb -=  For the 

numerical simulation of the system in Fig. 7, the two blocks (the first one connected in 

series with the input v  and the output ,u  and the second one connected in series with the 

input u  and the output q) are replaced by the transfer function ().sdH  
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NUMERICAL SIMULATION RESULTS 

 Results obtained for the system with PD control law 

 First of all, we design the controller for the system in Fig. 5 in the case of a MAV 

(Micro Aerial Vehicle) insect type. The four-bar mechanism has the following parameters 

[3]: ,mm10,mkg105.4,25.0,25.0,mg4,mg2 ,mg9 31

211

23

*

31

*

13

*

21 ==ÖÖ====== - llImmmmmmm  

,Nsm102,Nsm10,N/m6,N/m43,mm7,mm7,mm2 8

3

5

13142

-- Ö======= bbkklll a  

.rad/s1,rad/s1,Nsm109 2

21

9 ==Ö= - ddbw  By using the calculation equations presented in 

the previous sections, we determine the variation domains of all the coefficients; one 

yields: ( ) ( ) ( ) ( ) ( ) ( );21,7.1,20,1,4.1,8.0,8.0,0,10,1,40,20 432132 ÍÍÍÍÍÍ DDDDww  

.rad103.2
d

d
,rad103

d

d 13

max

314

max

2 -- Ö=ö
÷

õ
æ
ç

å

q
Ö=ö

÷

õ
æ
ç

å

q

ww
 With these, we obtained: ,mkg104 27

1 ÖÖ= -a  

. Nsm/rad105.1,Nm105.1,/radmkg107,mkg102 52

1

24

3

27

2

---- Ö=Ö=ÖÖ=ÖÖ= hgaa  Choosing ,5.0=e  

we also obtained the controller’s gains: .s108,120 4-Ö== dp kk  We have software 

implemented the system in Fig. 6 and we obtained the characteristics in Figs. 8 and 9. For 

the software implementation of the Newton-Raphson algorithm, we used the Matlab 

function “embedded” which requests the existence of a C compiler; this compiler works 

together with the toolbox of the Matlab/Simulink. In Fig. 8 we presented the time 

charteristics of the system in Fig. 6 for a step type input having the form: 

() () ()( ) .deg11252.7510 ttt Ö+=ÖqD+q=q  The system has an overshoot and the signal 

q is stabilized to the value 87.52 deg. in a very short time ( ),/1,10s10 24 fTT == --  with 

null stationary error, while the signals q and y are stabilized too; q# is stabilized to zero. 
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The non-dimensional variables 2w  and 3w  are also stabilized and, accordingly, f# and y# 

become null. The form of the time characteristic ()qq#  (which is called the portrait phase) 

expresses the absolute stability of the nonlinear system in Fig. 6; the characteristic leads 

to a stable limit cycle.   

 For a sinusoidal type input ( ) ( )( ) ,deg1002sin1252.752sin0 tft p+=pqD+q=q  we 

obtained the characteristics in Fig. 9. The system follows very closely the input signal and 

has null stationary error. The variables 2w  and 3w  are stabilized; q# and, accordingly, f# 

and y# are stabilized at high values. 

 Results obtained for the system with adaptive control law 

 For the system in Fig. 7, using the same parameters like the ones associated to 

Fig. 6, we calculate the gains (parameters) of the dynamic compensator pk  and dk  such 

that the roots of the characteristic equation: 

  0ss 00

2 =++ pd kbkb  (55) 

are situated in the left-side complex plane. Thus, imposing for this characteristic 

equation, for example, the roots: -380 and -480, we obtained 51075.7 -Ö-=pk  and 

.1065.3 7-Ö-=dk  The linear observer is described by the equation (47); Ê  is the 

estimation of the state [ ].T

eeqq=¹
#eE  The observer gain matrix L  is chosen such that 

the matrix LcALCACLAA -=-=-=
~

 is stable (desired eigenvalues are imposed for 

the matrix A
~

); we have used [ ] ,,01,
0

,
00

10

0
c

T
BdAAc

b
BBA -==ùú

ø
éê

è
==ùú

ø
éê

è
=  [ ].dpc kkd =  By 

using as eigenvalues for A
~

 the negative constants -380 and -480, we obtained the gain 
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matrix [ ].0039.0832.010 7 TL -=  The matrix P  (the solution of the first equation (50)), 

using 22.0 IQ=  ( -2I  the identity matrix), is .
0001.00

0209.21
ùú

ø
éê

è
=P  The matrices W  and 

V  are calculated with (49), by using the constants .05.0=G=G vw  The robustness 

component of the adaptive control law v  is obtained by means of (46) where 

.1,001.0,01.0 === Zkk vz  For the neural network, we chosen 91 =n  input neurons, 

102 =n  neurons in the hidden layer and 13 =n  output neuron. In this case, the input 

vector is: ()( )() ( )( )[ ]Tdtydtytydtvtv 6...ˆˆ1 ---=h  with .001.0=d  The vector a  

appearing in the expression of the sigmoid function ()( )( ),1
1--+=s azez  is the so-called 

neural network activation potentials’ vector; for this example, it has been chosen as: 

[ ].1.02.03.04.05.06.07.08.09.01=a  

 In Fig. 10 we present the Matlab/Simulink model of the system in Fig. 7; it has 

many subsystems and represents the software implementation of the block diagram in 

Fig. 7 – the adaptive system for the control of the MFI’s thorax; by means of this 

Matlab/Simulink model and a software program in Matlab environment, we have obtained 

the time characteristics in Figs. 11 and 12 associated to the system with step input type 

and sinusoidal input type, respectively. The form of the time characteristics ()qq#  expresses 

the absolute stability of the nonlinear system in Fig. 7; this characteristic leads to a stable 

limit cycles. When the input is a step type signal, q and, accordingly, f and y are 

stabilized with null stationary error; 2w  and 3w  are also stabilized, while  ,,fq##  and y# 

become null. Comparing the responses of the two systems for a step type input (see the 

characteristics in Figs. 8 and 11), we remark that the characteristics in Fig. 8 (for a PD 
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control law) are faster and have overshoot, while the characteristics in Fig. 11 (adaptive 

control law) are not characterized by overshoot; the stationary errors are null for both 

systems. For a sinusoidal type input, the response of the adaptive control system 

reproduces the input signal (as form), but it is characterized by a small delay with respect 

to the input signal; the response of the system having PD control law also reproduces the 

input signal. 

CONCLUSIONS 

 In this paper we deduced nonlinear forms of the dynamic models for the deformable 

and non-deformable four-bar mechanisms (three bars are mobile, while one bar is fixed). 

The dynamic model of the four-bar mechanism is a six order system; the state variables are 

the angles and the angular rates of the bars ( ).,,,,, yfqyfq ###  The variables yf,  (which 

depend on the independent variable q) have been calculated by using a Newton-Raphson 

type algorithm. For the choice of the initial approximate solution ( ),, 00 yf  to ensure the 

convergence conditions, we established the variation limits for the independent variable 

and the geometric dimensions of the four-bar mechanism with respect to the range of 

variation of the wing beat angle ().f  The angular rates f# and y# have been obtained with 

respect to q# and the transmission ratios ( )yfq ,,2w  and ( ).,,3 yfqw  The control of the 

four-bar mechanism has been achieved directly by means of the control of the variables qq#,  

using a PD control law; the parameters of this control law have been obtained by means of a 

Lyapunov function. Indirectly, the control of the other states ( )yyff ## ,,,  has been also 

accomplished. To decrease the overshoots and, thus, the possible damage of the four-bar 
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mechanism, we designed an adaptive control law based on the dynamic inversion and 

neural networks. The validation of the theoretical results (two control systems) has been 

achieved by means of complex numerical simulations; these are very good and they have 

been analyzed in the fourth section of the paper. 
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Fig. 1 The four-bar mechanism 
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Fig. 2 The mechanical model associated to the mechanism with four elastic bars 
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Fig. 8 The characteristics obtained for the system in Fig. 6 for a step type input 
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Fig. 9 The characteristics obtained for the system in Fig. 6 for a sinusoidal type input 
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Fig. 10 Matlab/Simulink model of the system in Fig. 7 
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Fig. 11 The characteristics obtained for the system in Fig. 7 for a step type input 
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Fig. 12 The characteristics obtained for the system in Fig. 7 for a sinusoidal type input 

 

 

 


