Journal of Dynamic Systems, Measurement and Control

Four-bar mechanism’s PD and neural
adaptive control for the thorax of the
micromechanical flying insects

Romulus Lungu

University of Craiova, Electrical, Energetic, and Aerospatiale Engineering Department
107 Decebal Street, 200440 Craiova, Romania

romulus_lungu@yahoo.com

Lucian Sepcu

University of Craiova, Electrical, Energetic, and Aerospatiale Engineering Department
107 Decebal Street, 200440 Craiova, Romania

Isepcu@elth.ucv.ro

Mihai Lungu®

University of Craiova, Electrical, Energetic, and Aerospatiale Engineering Department
107 Decebal Street, 200440 Craiova, Romania

Lmal312@yahoo.com

ABSTRACT

The paper focuses on the dynamics and mbrtf the nondeformable anddeformable foutar
mechanismtfree ofthe barsare mobile and one is fixgdhis being a subsystem of th@icromechanical
flying insects thorax. Thecontrol of the mechanism(six order systemdescribed by agrange equationss
initially achievedby usinga proportionatderivativecontrol law, a NewtorrRaphson type algorithm, arttie
Lyapunovtheory. Becausethe t h o r dynamiss is strongly nonlinear and is characterized by fast time
varying coefficientsthe PD control law cannot always guarantee small overshoot and angular rates; to
overcome this drawback, over tlentrol law PD corponent wesuperposea neuraladaptive component

which compensat¢he error of theglobal nonlinearity approximation associated o t he t horax’ s dyn:

The two obtained control systerase validated by complex numerical simulations.
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INTRODUCTION

The MFI (Micromechanical Flying Insect) type servo-mechanisms (servo-systems,
servo-actuators) are physical models of the insects’ thorax. Such a servo-mechanism generally
consists of three subsystems: the command subsystem (electric engine or piezoelectric
actuator), the wing actuation equipment (the cinematic mechanism), and the controller.
The most used command subsystems (equipment) are the piezoelectric actuators; these
work together with mechanical transmission elements for the wing’s actuation, e.g. the four-
bar mechanism [1-11]. In recent years, the studies and researches have been developed and
culminated in the development of efficient flying robots [2, 12-16], but, from our information,
none of them has used both the dynamic inversion and forward neural networks in the
design of the MFIs’ control; this is achieved in this paper, being interesting to see if such a
control law can guarantee the control of the four-bar mechanism of the MFIs. Thus, our aim
is to design new control systems for the control of the four-bar mechanism (subsystem of
the micromechanical flying insects’ thorax); before the design process, we obtain the
mathematical model (dynamics) of the four-bar mechanism by means of the Lagrange
equations [17]. It will be shown that the dynamics of the four-bar mechanism is described
by a nonlinear system having three equations which depend on three variables (the rotation
angles of the mobile bars); one of the three variables (the rotation angle of the driving bar) is
independent, while the other two are dependent on the first one. The states depending on
the independent variable are calculated by using a Newton-Raphson type algorithm [18]. To
obtain the parameters of the proportional-derivative control law, the Lyapunov theory is

used; it will be shown that the dynamics of the servo-actuators is nonlinear and has fast
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time varying coefficients, and, therefore, if the PD control laws lead to dynamic processes
characterized by high overshoot and angular rates, the deformation and even damage of
the four-bar mechanism may occur. As a consequence, from some points of view, a neural
adaptive control which compensates the global nonlinearity would be a better choice. In the
design of the neural adaptive control law, we use the dynamic inversion technique and neural
networks. The adaptive control law has two components: the role of the first one is to
compensate the global nonlinearities (compensation of the dynamic inversion error), while
the second one is useful for the control of the linear subsystem with respect to the driving
bar angle [19-23].

The paper is organized as follows: the dynamics of the four-bar mechanism together
with the calculation of the two dependent variables is presented in the second section; the
design of the two control laws (proportional-derivative and adaptive) for the MFI’s control is
presented in the third section; in the fourth section of the paper, complex simulations to
validate the proposed automatic control systems have been performed and analyzed;

finally, some conclusions are shared in the fifth section.

DYNAMIC MODEL OF THE FOUR-BAR MECHANISM

Conventional rigid body four-bar mechanism
The four-bar mechanism is a subsystem of a MFI’s thorax. The four-bar mechanism
has three mobile bars (all considered to be rigid). The structure of such mechanism is

presented in Fig. 1; each of the three mobile bars is considered rigid [10]; the only fixed

bar is denoted in Fig. 1 with AD r;,i =1,3 are the position vectors associated to the
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mobile bars’ mass centers (the bars have the masses m;), |TI =1,4 are the position vectors
associated to the joint Bwith respect to A, joint Cwith respect to B, joint D with respect to

G and joint D with respect to A; d, ,i =1,3 express the angular positions of the F,’ with

respect to the position vectors f q i =1,4, are the angular positions of E with respect to
the reference axis Oxof the coordinate system OXxy The coordinates of the mobile bars’
mass centers with respect to the Oxyreference system are x; , y.. The local coordinates’
systems Ax;h,,Bx,h,,Dx;h, areconnectedtothe mobile bars. The Cartesian coordinates

of the mobile bars’ mass centers can be expressed as functions of following angular

coordinates:

x(a,) =1, cos(q, +d,), y,(a,) = r, sin(, +d,),
X, (Q1 ’Q2) = |1COS(Q1)+ I COS(Qz +d2), Y, (Q1 ’Q2) = |1Sin(Q1)+ I Sin(Qz +d2)’ (1)
Xs(qs vQ4):|4COSQ4 +r COS(% +d3)- Y3(Q3 'qA): l,sinq, +r35in(Q3 +d3)-

By using the previous equations, the velocities of the mobile bars’ mass centers with

respect to the Cartesian system (for q, = constant) are obtained as following:

lez#;L:'r1&Sin(q +d)Vy=I’1&COSC]l+d) _r1&1’

o e (%)
V,, =% = élsmch"'rzism( +d )U& 5y =diC osql+r2icos( )U&l’(z)
& G é & G
e e a
Vi =% =& 1y gs sin(q, +d )l;l&l* sy =% = ; %COS(% +d3)l;l&1 Vs =y,
é 1 a 1 a
and V, =udf, Vy =v,f, ,i =1,3, respectively, with
u, =-r,sin(g, +d,),v, =r,cos(q, +d,),
u, =- [Ilslnq1 +r2w25|n(q2 +d )],v2 =1, cosq, +r,w, cos(q +d ) (3)

U, = - r,w,sin(q, +d,),v, =rw, cos(a, +d,),w =& /4, ,i =1,3.

Thus, the dynamics of the four-bar mechanism is described by three equations which are
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nonlinear with respect to three variables (the rotation angles of the mobile bars); one of
the three variables (the rotation angle of the driving bar) is independent, while the other two

are dependent on the first one. The non-dimensional variables u; and v, can be obtained

starting from the equation which describes the connection between the four-bar, i.e. [17]:
\J \J \J \J . . . . . .
|, +1, - I; =1,; if this equation is projected on the Cartesian system’s axes, one gets:

l, cosq, +1, cosq, - 1;cosq, =1, cosq,,l; sing, +1,sinq, - I;sing; =1,sinq,,  (4)

and, by differentiating (g, = constant), respectively:

l, sing,

I, sin I, sin |, cos |, cos
2 qZW + q3 2 qZW + 3 q3

w, =1,- =

w, =1. 5
sing, ° l, cosq, - I, cosg, ° )

'3
I1
The equations (4) express the fact that only the coordinate q, is an independent variable,
while the other two depend on this variable; q, =q,(q,).q; =0a,(g,). Similarly, the

equations (5) express the fact that only the angular rate &1 is independent, while ﬁz and

&3 depend on & ; now, by solving the system (5) with respect to the unknown variables

w, =&, /& and w, =&, /&, one yields:

w

, sin(d, - @) 1 sin(a, - &) (6)

w, =1 = W, = 1= .
* l,sin(a,- a,) 15 sin(a, - )

To determine the four-bar mechanism dynamical model, one uses the Lagrange equation

Ea 0-%+£+£:01 (7)
dt(; 1+ pql “’ql H&l

where Kiis the total kinetic energy, P - the potential energy, D - the dissipated energy;

P= P(ql) has two components: Pg( l)- the potential energy of the mechanism having

non-deformable bars and R, (ql)- the potential energy due to torsion,
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P(ql) =P, (Ch)"' R (ql)’ P (ql) = g(rnlyl tmy, + msYs)’ R (Ch) =-M,q, (8)
with y, i =1,3 havingtheforms(1)and M, - thetorsionmoment (torque)ofthe bar 1.

The total kinetic energy of the four-bar mechanism has the expression [10]:

< =Ko 8) =24 [z +vi)+ 28] ©)

uyn
|

where J; represents the inertia moment of the bar “I” with respect to the axis which is

rectangular on the OXxy plane and passes through the mass center of the bar “i”; the

components V,, and V,, are described by equations (2) and (3). With these, (9) becomes:

K =%J(q)aﬂ,a(q):§ [m (0 +v2)+ 3,]we (10)

with q=0,. To obtain the equivalent inertia moment J(g), the variables u, v ,i=1,3
are expressed with respect to the local coordinates Xx;,h; as follows: X, =r, cosd,,
h, =r, sind, . With these, the variables u, ,v, ,i =1,3 becomes:

u, =-X%,sing- h,cosq,v; =x,cosq- h,sinq,

u, =[- I;sing+(x, sing, +h, cosq, )|w, v, =[I, cosq+(x, cosq, - h,sing,)|w,, (11)
Uy = - (X3 8in g, +h; €S0 )W, , V5 = (X, C0S T - g sing )ws;

replacing these forms in (10), one gets:

‘](q) =Gy + Clwg +C,w, COS(Qz - g+d, )’ (12)

with C, =J, +mr? +m,Z,C =J, +mr},C, =J; +myr},C, =2myl,r,. Now, to calculate the

secondterm in (7), one first calculates d‘;—(q) by using (12); it results [2]:
q

i_d‘] (q) =C,w, % +C,W, dw, +
1 . éedw, . . o
+ZC3Sd_qC05(Q2 - q+d,)- w,sin(a, - g+d,)- w;sin(q, - Q+d2)8’
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with dw, _I, D, +D, ’dw3 _li D;+D, " and
dg I, sin?(g,- q)’ dg I, sin?(q, - g,)
D, = (w, - 1)sin(g, - g, )cos(q, - a),D, = (w, - w, )sin(q, - g)cos(a, - g), (14)
D, = (w, - 1)sin(a, - q;)cos(a, - g),D, = (w; - w,)sin(q, - q)cos(a, - q;).
Taking into account equations (8) and (1), the third term in (7) becomes:
% = G(q) =G, +GWw, +G,w,, (15)

where G, =mgr, cos(q+d,),G, =m,g|l, cosq+r, cos(q, +d, )],G, =m,gr, cos(q, +d,). If the

dissipated energy Dis not taken into account, the equation (7) gets the form:

J(q)ﬁ%%d‘;—gq)&? +G, +GW, +G,w; =M. (16)

Four-bar mechanism having two elastic bars
The diagram of the mechanical model associated to the mechanism with four bars,
taking into account the elastic deformations of the bars 1 and 3 (ABand CD), is presented

in Fig. 2 [3]; in this figure, m ,m,, and m, are the mobile bars’ equivalent masses,

l;,i=1,4- the lengths of the four bars which interact with the elastic and dissipative

external environment (atmospheric air); the interactions are modeled by elastic and

damping elements having the elasticity coefficients k; ,k, and the damping coefficients
b ,b;,b, . Thegeometricelements q, ,d, ,r,;, and |, fromFig.1become here g, =q,q, =-f,
9; =y,q,=0,d, =0,d, =b,d, =0,r, =1,,r; =l,; ¢h and ds; express the position of the
four-bar mechanism (bars 1 and 3 are elastically deformable) with respect to the mechanism

having four rigid bars. Corresponding to the displacements d; and ds, the angular position

of the mechanism with two deformable bars with respect to the one having only rigid bars
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is expressed by means of the angles a =g-q,and y =y - y, (Qoand y ¢ are the values of

the angles qand y, respectively, for the mechanism having four rigid bars).
The wing of MFl is attached to the slide (bar) FE The mass center of the ensemble
BCbar — FEslide — wing is situated near the middle of the FEslide and it has the position

vector r, ;

X, =- = 2 @Ii,r =12 (17)
am
i=1
where m, =m, +m, +m, @m, +m,,,m, is the BC bar’s mass, m, - the FE slide’s mass,
and m, - the wing’s mass; tan(b) @, /1,.

The kinetic energy K has expression (10), with Jd) described by (12), where

I 2

J, =3, =0;C, =(mf +m;)|12,C1 =J, +m;r; =JW+WI;§,C2 =rr§|2,C3 :2m;|1r2; the

equations (6) become now:

W2:I_ls?n(q-y)’wgzl_ls_in(f+q). (18)
1, sin(y +f) l, sin(f +y)
The potential energy has the form (8), i.e.:
. “ N * . 1 1
P'(a)=P;(@)+R(@)=glmy +my, +msy3)+§k1df +okds- Mg, (19)

with y,,i =1,3 of forms (1). Using the geometric equation: I;siny =I;sing- |,sinf,

equation (19) becomes
« . .. o . 1 1
P*(a) = g[ml, sing+mir, sin(f - b)- nblelnf]+§k1I12(Q- a) +2kIsly - yo), (20

with m =my +m, +m;,. The dissipated energy is expressed as follows [3]:
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=1 (od +b,2f2 +b,8)
D=7 (b +b,12* +b.d) (21)
where & = |j€f: L&, &, = Iﬁ =19 = ,w,&,#= - w,&. Thus, one obtains:

1
D =~ F(a)" F(a) =Bl +b,I5w5 +byl3ws (22)
The dynamic model of the four-bar mechanism, having two elastically deformable bars

(AB and CD), described initially by the Lagrange equation (7), replacing P with P", is now:

1dJ
.J(q +E%&? +GO+G1W2+62W3+F(Q)&:Mq’ (23)

where G, =k|2q+mgl,cosq,G, =mgr, cos(f - b)+migl, cosf ,G, =k, = k,l2w,q.
: . . 1.dJ(q) . . .
The expression of J(q) is (12), while the form of > do is (13) with w, and w, having
q

dw, I_l D, +D, dw :l_ D, + D, D.,i =1,4 have the forms (14),

the forms (18), : , L D,
dq 1,sin?(q,- g) dq I, sin?(q, - qs)

where 6,=-f and 6,=y . Thus, the variable q represents the solution of the nonlinear equation
(23), while the variables f =f(q) and y =y (q) are the solutions of the system (4), where
q, =§, g, =-f,q; =y ,q, =0; the system (4) becomes:

f,(f,y)=1,cosf - I,cosy +l,cosq- I, =0, f,(f,y)=-1,sinf - I;siny +1,sinq=0. (24)

The solving of the system

To solve the system (24), a Newton-Raphson type algorithm [18] is used. Thus,
starting from the approximate solution x, = (f oY O), the solution associated to the step
(k +1) is calculated: f,,, =f,  +DF .,y ., =Y. +Dy,.k=0,1,..., where f, =f(x),
y. =y (x.), and Dx, =(Df ,,Dy ) form the solution of the linear system:

I(Xk)DXk =- f(Xk)’ f =(f1' fz); (25)



Journal of Dynamic Systems, Measurement and Control

eufl Hfl

above, | is the Jacobian associated to the system (24), i.e. | (x ) = g L“‘?/ . The solving
etz M u

e Ly g,

of the system (25) involves the fulfillment of the condition of continuity of the partial

derivatives nearness the solution leim X, as well as the fulfillment of the condition

D=det(l(x)), 0. Thesystem (25)is equivalent with the following one:

%3 Df +%8 Dy, =- fi(f.y %8 Df +%e Dy, =-f,(f..y.); (26)

the index X, expresses that the partial derivatives are calculated as functions of

X, = (f oY k). The solution of the system (26) is:

ilg/D,Dyk:%flwz ﬂe A A LSNINTY -
¥ ¢

a
Df, =2& f, M,
k? pf Vs guyuyufex

k
The functions f,(x,)=f,(f,.y ) and f,(x)=f,(f,.y,) are expressed by means of (24),

i.e. fl(xk):lzcosf « - lycosy  +1,cosqg-1,, fz(xk):lzsinf « - lgsiny  +1;sing.

The expressions of the partial derivatives f,(x, ) and f,(x, ) are, respectively:

%g =_|25infk’%§ =|35inyk,%§ =-Izcosfk,%§ =-1,cosy ,. (28)
Q +><|< Q +Xk (s: +Xk Q +><|<

For each value of the angle q=q(t), the functions f,(x.), f,(x.), as well as their derivatives
are determined. These are replaced in (27) and there are obtained Df , and Dy, ; then, by
using the equation f,, =f, +Df,,y,,=yY,+Dy,,k=0.1,.., one obtains Df,, and
Dy ... The number of iterations (k) is limited by the imposed calculation error d. The

solution is the one which verifies the error conditions |f,|<d and |f,|<d. First of all, one

10



Journal of Dynamic Systems, Measurement and Control

must establish the variation limits for the angle g and the geometric dimensions of the
four-bar mechanism with respect to the beat angle f range of variation. According to Fig.
3., for I, =I,,1, =ni, I, =cl,, the equilibrium value of the angle q is described by equation

|42'| : =_C'2m, while, according to Figs. 3.b and 3.c, by means of the cosine’s
1

cos(dy) =

theorem, one gets:

cos( ):(I1+I2)2+If- 12 _(@L+m*+c2-1_nf+2m+c?

h 20, +1,), 20+ mc 20+ mc

12 +12- (1, +1,)° _1+c2- @+m _c?- (i +2m
211, 2c 2c '

(29)

cos(q,) =

DY, =|D0,| and Do, = Dg, express the limits (min and max) associated to variation of
the angle q with respect to the equilibrium value q,; the convergence of the Newton-
Raphson type algorithm is conditioned by the choice of g, and the value of Dg which must
be between Dqg, and Dq,. One presents below an example for the numerical calculation of
the bars’ rotation angles (q,f ,y); this will be later incorporated in the block diagram of

the whole control system for the automatic control of angle q.

Numerical example

For m=0.2 and ¢ =0.7, using the last expression of cos( 0) and the equations (29),
one gets: q, = 75.52deg,q, = 56.389deg,q, =87.96deg,Dg, = q, - ¢, =19.13deg,
Dg, =q, - 9, =-1244deg. Thus, bar 1 oscillates from one side to another of the
equilibrium position (g, ) with Dgi [Dg, Dg,| =[- 12.44 19.13]deg.

For the calculation of the angles f and y as functions of the input angle q, the

11
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nonlinear system (24) is solved with the Newton—Raphson method, imposing:

q=q = q, + Dgsin(2pft) = (75.52 + 12sin(2p 100t))deg, (30)
error d=10"°, and the approximate initial solution x, =(f,,y,)=(0, 180- q,)deg =
= (0, 104.48)deg. We software implemented the above mentioned algorithm based on

the Newton-Raphson method and obtained the characteristics in Fig. 4.

DESIGN OF THE SERVO-MECHANISMS’ CONTROL

The automatic control of the variable f (the beat angle of the insects’ wing) may be

indirectly achieved by means of the independent variable q control (the rotation angle of
the driving bar). The variables f(q) and y (q) as solutions of the nonlinear system (24), are
obtained within the block 1 of the structures in Figs. 6 and 7, respectively; this is done by
means of the algorithm based on the Newton - Raphson method. Also, in this section, the
control of the four-bar mechanism is done, beside the usage of a proportional-derivative (PD)
control law, by means of an adaptive control law based on dynamic inversion and neural
networks; the control law has two components: the former is for the global nonlinearities’
compensation (compensation of the dynamic inversion error), while the latter is a PD control
law which is useful for the linear subsystem control with respect to the driving bar angle [19-

23]. The adaptive control law design is achieved in the second sub-section of this paper’s section.

Design of the control system with proportional-derivative control law

The mathematical model of the MFI’s thorax is a 6 order system, having the state
vector X= [q & f y W]T. If the control law is proportional-derivative and it
depends on q, it will be shown that the stationary error q, is null and the stabilized

12
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vale of the angular rate & is also null; accordingly, f and y are stabilized. Also, w, and
w, are stabilized; #=-w, and ¥ =w,§ will be stabilized to zero. Thus, we intend to
prove that a PD control law with respect to q stabilizes both the variables q and &, and

the variables f ,#,y YE.
The structure of the system for the automatic control of the angle q with PD control
law is presented in Fig. 5. The thorax’s dynamics is composed of a four-bar mechanismanda

piezoelectric actuator (acting on the bar 1 of the four-bar mechanism with the torque M)

and it is described by the nonlinear equation (23). The output of the controller is a voltage
which is applied to the piezoelectric actuator.

Denoting with k, and k; - the proportional and the derivative gains of the control
law which must stabilize the MVI’s flight (Mq =kpqe+kd&e,q=a- qe) and taking into

account the form (15) for G(q), the equation (23) becomes:

ot + 520 e+ P+ S 0B 0. )

with pft)= J(q)ﬁt+%d‘;—((f)32 + F(q)§+ G(g). We must take into consideration that J(q),

—,G(q), and F(q) are bounded functions [10], i.e. there exist the positive constants
1]dJ(q) :

a,8,3,0;, and h, suchthat a ¢ J(qg)¢a, 2l aq ¢ay, |G(g) ¢ g, .|F(@)¢h. Imposing

that the angular rate and the angular acceleration are bounded, i.e. W ¢d, ﬁd: d,, with

d, and d, - positive constants, it results:

|p(t) ¢ a,d, +a,d? +hd, +g,. (32)
13
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In order to design the controller, one chooses a Lyapunov positive defined function

expressing the system’s total energy; it has the form [10]:
1 1,
V() =Vla. &)= 2k + ka2 +er(aa.d, (33)

with x= [x1 x2]T = [qe &G]T - the error vector associated to the system in Fig. 5. The
Lyapunov function verifies the inequalities: XTle ¢V( e,&e)d: XTQZX, where

iek lek, ea,m

Q=28 e, aitiQZ 28a, a4

Because the Lyapunov function is positive

defined, one imposes that x' Qx is positive defined, i.e.:
trQ =1 (a, +k,)>0,detQ == (ak, - e*a?)>0 (34)
rQl_Eai p 1te_§a1p'ea2 .

Similarly, in orderthat x' Q,x is positive defined, the following conditions must be fulfilled:
trQ, =(a, +k,)>0.detQ, = = (a,k, - eaZ)>0 (35)
er—Ea’z P !eQZ_Ean-eaZ :

Using the derivative of the function (33), by replacing ﬁte with the form (31), and taking into

accountthe above presented bounds of J(q), L G(q), and F(q), onegets:

VH(x) = - X Qux+ ¢ [[X] + ¢ X, (36)
e e 7]
ek “(ky+F) ¢
with ¢ =VL+e’(a,d, +a,d? +hd, +g,).c, =ea,.Q =5, 2" U The

& (k +h) ky +h- a,d, - eazg
matrix Q, is positive defined if trQ, =k, +ek, +h- ab - ea, >0,detQ, >0. This matrix

can be brought to the form Q,, = d, 0o

80 1.1

where | ; and | , are the eigenvalues of the

matrix Q;, i.e. the solutions of the characteristic equation [18]:

14
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12 - tr(Q,)l +detQ, =0. (37)

The equation (36) may be put under the form: V¥{(x) ¢ c ¥ - c2||><||2 + c3||><||3 where

RO SRt RN ST X S

From condition ¢, >0, one gets the equation (k, +h)|dk, - elk, +h)|>4a,d, (k, +a,),
which differs from the one in [19]. To the last equation, one must add the second

condition (34), i.e. k,, >e’a’ /a . Thus, the parameters of the controller ( k, and k) are

chosen such that the following two conditions are met:

e’a’

(ks +h)[ak, - ek, +h)|> 23,0, (k, +a,).k, > alz . (39)

Now, the last form of the function (x) can be written as follows:
V(= e - clpg )= - x)d- x.) (40)
Cm G40 o =G PNG A0S kg i x, <[
2c, e 2c, ’ '

with x, = <X, ; this double

inequality is verified if the conditions (39) are fullfilled.
In Fig. 6 we present the block diagram, with transfer operators, associated to the

system in Fig. 5.

Design of the control system with adaptive control law

Because the dynamics of the servo-actuators (servo-mechanisms, thorax) is
nonlinear and has fast time varying coefficients, the usage of PD control laws leads to
dynamic processes characterized by high overshoot and angular rates, this having

implications on deformation and even damage of the four-bar mechanism. Thus, in this

15
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paper, over the PD control law component, we superpose an adaptive component which
must compensate the global nonlinearity (the equivalent of all nonlinearities) associated
to the MFI thorax’s dynamics. According to Fig. 7, the global nonlinearities may be
concentrated into the function e; this represents the h, function approximation error
(dynamic inversion error). If the control law adaptive component compensates the signal
e, then the component Vg (PD type) must compensate the deviation (error) of the
equivalent linear system closed by negative unitary feedback after g, having on its direct
way the linear dynamic compensator (PD type) and the linear subsystem of the MFI’s
dynamics with relative degree r =2 with respect to the variable q.
The dynamics of the MFI’s thorax is a system with one input and one output (SISO
system) described by the equations:
#=f(xu),y=h(x), (41)
with X:[q &]T - the state vector, f and h- nonlinear functions, generally unknown,

u® M, - the input, and y=q- the output of the dynamics. System (41) satisfies the

hypothesis in [22] and equations: y(r) =h, (x,u),hr =ﬂ =h() & =0,0¢i<r; bh, . 0;
dt’ MU MU

this means that all derivatives y(‘),0¢i <r do not depend on u, while the derivative

y(r) =h, depends on u;r is the relative degree of system (41). In the case of the thorax’s

dynamics, r =2. We design a control law V after the output y =q which has an adaptive

component v, provided by a neural network such that y(t)- y =q(t) [23]; its form is:

0=h,(y.0)=h o.M, (42)
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where h (y,0) is the best approximation of the function h, (x,u)=h, (x(y),u)=h (y,u). The

equations y(r) =h, (x,u),hr :% = h(r), and (42) are equivalent with the following ones:

u=h(y,v),a=R*(y,0). If h * h then y() = vt bv; otherwise:

y" =hv,v=v+e, (43)
where e=¢x,u)=h (y,u)- h (y,q) is the approximation error of the function h, (the
inversion error), which acts like a disturbing signal of the system. Using the Taylor series

expansion of the function u = hr'l(y, v) around the pair (y,V), one successively obtains:

u=hy )= (y.9) - (). = S (o) (44

Imposing that y- y, the signal V can be chosen of form [19, 21]:
V=V V, +V, (45)
where v, is the output of the linear dynamic compensator, used for the control of the linear

subsystem (43), with e=0,v, - the adaptive command for the compensation of the error e,

while V is a robustness component of the control law which may be calculated with a formula

based on the Lyapunov’s theory [22]:

v =k, (z]. +Z)Hé“ﬁ+kﬁ, (46)
. . . _é/v 0@_ 2 _ T =. .
with k, and k- positive constants (gains), Z = &0 VB’”Z”F —tr{Z Z}¢ Z: ||Z||F is the

Frobenius norm of the matrix Z,Z - the norm of the ideal matrix associated to the neural

network, E - the estimation of the state E (E is provided by a linear observer), E = ET PB

(B - the input matrix of the linear subsystem, P- the solution of a Lyapunov equation),
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while W and V are the weight matrices associated to the neural network. To estimate the

state vector E of the system containing the dynamic compensator and the linear subsystem
(with relative degree r =2 and the transfer function is Hd(s):bolsz), we use a linear
observer described by the following equations [24]:

#-AE+Llg,- )0, =CE, (47)
with A= A- Bd., A- the matrix associated to the linear subsystem, d, = [kp Ky OJ, and L -
the gain matrix which is chosen such that the matrix A= (ﬂ- LC) is asymptotically stable.
The adaptive command v, is calculated by means of a Lyapunov function V, (W,V), where
W and V are the weights of the neural network NN; the form of the signal v, is:

v, =W'sfv7h). (48)
From the stability condition \ff_, <0, one gets the equation system [19, 24]:

W=-G,[2ls - sVTh)ETPB + k(W - Wit | F=- g [ohETPBsi+ Kk - v, ) (49)

is the Jacobian

in equation (49), s is the sigmoid function (s (z) = (1+ e az)_l),s i= %
Z |y

of vector s,\W, and V, - the initial values of the weights Wand V, G,,G - positive
constants, k> 28%(12 +0f ||P§||2 8 k =k,a, +||P§||gl K, = ||P§||+“I5§“ ,0,,a,- positive constants,
E =E'PB, while P and P(r 2 r) arethe solutions of the Lyapunov equations:

ATP+PA=-Q,ATP+PA=-Q; (50)
the vector h[(nl +1)3 1] has the form [24]:

h:[l A yg]Tz[]'IlIZ"'Inl]T’ (51)
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where V7 = [V(t) ¥(t- d)..v(t- (n, - r- 2)d)]", yI =[ylt)ylt- d)...y(t- (n, - r-2)a)]";
l,,1,,2 ,1, aretheinputs of the neural network.
Separating in (23) the linear components (constants) of J(q) and G(q), this

equation becomes:

= Lo 1 e @l L
with Ji(q)= J(a)- C, and Gi(g)=G(q)- (kI?)g. Now, identifying the terms in (52) with

the ones in (43), where y =q, it results:

A

=h*(0,9)=-V+k;

9=f,(y.0)=h a.M ) ( -kq)a
(53)
e is the approximation error which is obtained by means of the subsystem consisting of
the blocks 1-6 in Fig. 6; k =kl +k2w?. Now, taking into account (44) and the first
equation (53), one yields:

u=M, =-v+kg. (54)
In stabilized regime v, compensates the error e such that the system in Fig. 7 is equivalent
to the linear system with negative feedback after g, having on its direct way the linear
dynamic compensator and the transfer function Hd(s)= b, /s®, with b, =-1/C,. For the

numerical simulation of the system in Fig. 7, the two blocks (the first one connected in

series with the input v and the output u, and the second one connected in series with the

input u and the output q) are replaced by the transfer function H (s)
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NUMERICAL SIMULATION RESULTS

Results obtained for the system with PD control law
First of all, we design the controller for the system in Fig. 5 in the case of a MAV

(Micro Aerial Vehicle) insect type. The four-bar mechanism has the following parameters
[3]: m =9mg, m, =2mg,m, =4mg,m =0.25m, ,m; =0.25m, 1, =4.5Q0 " kg@n? I, =I, =10mm,
l, =2mm,l, =7mm,l, =7mm, k, =43N/m,k, =6N/m,b, =10"° Nsm,b, =2Q0® Nsm,

b, =90 °Nsm,d, =1rad/s,d, =1rad/s>. By using the calculation equations presented in

the previous sections, we determine the variation domains of all the coefficients; one

yields:  w, i (20,40),w, 1 (1,10),D,1 (0,0.8),D,1 (0.8,1.4),D,1 (1,20),D,1 (1.7,21);

%1&8 =300* rad'l,gedﬂg =2.300%°rad*. With these, we obtained: a =4@Q0 " kgGn?,
¢ 49 < ¢ A9 <

a,=2A0" kg@n*,a, =7A0* kgGn’/rad, g, =1.5A0*Nm,h=15A0"°Nsm/rad. Choosing e = 0.5,
we also obtained the controller’s gains: kp =120, k, =8Q0*%s. We have software
implemented the system in Fig. 6 and we obtained the characteristics in Figs. 8 and 9. For
the software implementation of the Newton-Raphson algorithm, we used the Matlab
function “embedded which requests the existence of a C compiler; this compiler works
together with the toolbox of the Matlab/Simulink. In Fig. 8 we presented the time
charteristics of the system in Fig. 6 for a step type input having the form:
a(t) =q, +Dg d(t) = (75.52 +12 C"l(t))deg. The system has an overshoot and the signal

q is stabilized to the value 87.52 deg. in a very short time (10'45 =10°T,T =1/ f), with

null stationary error, while the signals q and y are stabilized too; § is stabilized to zero.
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The non-dimensional variables w, and w;, are also stabilized and, accordingly, f and ia
become null. The form of the time characteristic &(q) (which is called the portrait phase)
expresses the absolute stability of the nonlinear system in Fig. 6; the characteristic leads
to a stable limit cycle.

For a sinusoidal type input q=gq, + Dqsin(2pft)= (75.52 +12$in(2p100t))deg, we
obtained the characteristics in Fig. 9. The system follows very closely the input signal and
has null stationary error. The variables w, and w;, are stabilized; ﬁ and, accordingly, lid

and y# are stabilized at high values.

Results obtained for the system with adaptive control law
For the system in Fig. 7, using the same parameters like the ones associated to

Fig. 6, we calculate the gains (parameters) of the dynamic compensator k, and k; such
that the roots of the characteristic equation:

s? +hykys +byk, =0 (55)
are situated in the left-side complex plane. Thus, imposing for this characteristic

equation, for example, the roots: -380 and -480, we obtained K, =-7.7540° and

k, =-3.65Q0". The linear observer is described by the equation (47); E is the

estimation of the state E* e= lqe &GJT. The observer gain matrix L is chosen such that

the matrix A=A- LC =A- LC=A- Lc is stable (desired eigenvalues are imposed for

O log_p 800

o off f H,c=[1 0, A=A- Bd,, d, =|k, k| By

the matrix A); we have used A=

using as eigenvalues for A the negative constants -380 and -480, we obtained the gain
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matrix L =10'7[0.832 0.0039]T. The matrix P (the solution of the first equation (50)),

09 0 o

2 .
0 0_0001@. The matrices W and

using Q=0.21, (1, - the identity matrix), is P:gﬂ
V are calculated with (49), by using the constants G, =G =0.05. The robustness
component of the adaptive control law V is obtained by means of (46) where

k, =0.01,k, =0.001,Z =1. For the neural network, we chosen n, =9 input neurons,

n, =10 neurons in the hidden layer and n, =1 output neuron. In this case, the input
vector is: h=[1V(t)U(t- d) y{t) yt- d... y(t- 6d))]" with d=0001 The vector a

appearing in the expression of the sigmoid function (s(z)=(1+ e'az)'l), is the so-called

neural network activation potentials’ vector; for this example, it has been chosen as:

a=[L 09 08 07 06 05 04 03 02 0.1].

In Fig. 10 we present the Matlab/Simulink model of the system in Fig. 7; it has
many subsystems and represents the software implementation of the block diagram in
Fig. 7 — the adaptive system for the control of the MFI's thorax; by means of this
Matlab/Simulink model and a software program in Matlab environment, we have obtained
the time characteristics in Figs. 11 and 12 associated to the system with step input type
and sinusoidal input type, respectively. The form of the time characteristics &(q) expresses
the absolute stability of the nonlinear system in Fig. 7; this characteristic leads to a stable

limit cycles. When the input is a step type signal, g and, accordingly, f and y are
stabilized with null stationary error; w, and w, are also stabilized, while ﬁ,#, and ¥

become null. Comparing the responses of the two systems for a step type input (see the

characteristics in Figs. 8 and 11), we remark that the characteristics in Fig. 8 (for a PD
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control law) are faster and have overshoot, while the characteristics in Fig. 11 (adaptive
control law) are not characterized by overshoot; the stationary errors are null for both
systems. For a sinusoidal type input, the response of the adaptive control system
reproduces the input signal (as form), but it is characterized by a small delay with respect
to the input signal; the response of the system having PD control law also reproduces the

input signal.

CONCLUSIONS

In this paper we deduced nonlinear forms of the dynamic models for the deformable
and non-deformable four-bar mechanisms (three bars are mobile, while one bar is fixed).
The dynamic model of the four-bar mechanism is a six order system; the state variables are

the angles and the angular rates of the bars (q,f Y ,&,#,y#). The variables f,y (which

depend on the independent variable q) have been calculated by using a Newton-Raphson

type algorithm. For the choice of the initial approximate solution (f 0,yo), to ensure the
convergence conditions, we established the variation limits for the independent variable
and the geometric dimensions of the four-bar mechanism with respect to the range of
variation of the wing beat angle (f ) The angular rates # and ¥ have been obtained with
respect to § and the transmission ratios w, (q,f,y) and w;(q,f,y). The control of the
four-bar mechanism has been achieved directly by means of the control of the variables q, &
using a PD control law; the parameters of this control law have been obtained by meansof a
Lyapunov function. Indirectly, the control of the other states (f ,#,y y#) has been also

accomplished. To decrease the overshoots and, thus, the possible damage of the four-bar
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mechanism, we designed an adaptive control law based on the dynamic inversion and
neural networks. The validation of the theoretical results (two control systems) has been
achieved by means of complex numericai simulations; these are very good and they have

been analyzed in the fourth section of the paper.
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Fig. 1 The four-bar mechanism
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Fig. 2 The mechanical model associated to the mechanism with four elastic bars
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Fig. 3 The neutral and the extreme orientation positions of the mechanism’s bars
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