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1. Introduction 

The flight to high attack angles (specific for 

the fight regimes) is affected by the effects of 

aerodynamic instability. The complexity and 

uncertainty in modeling of such non-linear 

phenomena are the main arguments for 

designing of evolved adaptive control 

structures, in these conditions the linear 

models being far to describe correctly the 

dynamics of aircrafts. There is a high degree 

of uncertainty regarding the flight parameters 

and flying objects dynamics at high attack 

angles. Another argument is that the actuators 

are non-linear and present essential non-

linear elements such as the saturation of 

displacement or the saturation of the mobile 

elements speed. The stability and handling 

qualities must also be maintained in 

conditions of sensors and actuators failures.  

Control systems (denoted in this paper with 

A ) must have the capability to identify 

defects, to isolate the damaged elements and 

to reconfigure the architecture in real time. 

The failures belong to sensors, actuators or 

force equipments. Thus, a real time redesign 

of the control systems is needed. The 

observers must be easily adaptable; that 

means that their design algorithms must 

allow aircrafts state estimation with or 

without the signals provided by the damaged 

sensors. In all these situations real-time 

adaptive control based on neural networks is 

adequate [1], [2], [3], [4], [5]. The training 

process of the neural networks is done by 

using signals provided by the state observers;  

 

 

 

 

 

 

 

 

 

 

 

 

 

these state observers have, as input, the 

tracking error vector. 

The area of adaptive control has grown to be 

one of the richest in terms of algorithms, 

design techniques, analytical tools, and 

modifications. Despite the rich literature, the 

field of adaptive control may easily appear to 

an outsider as collection of unrelated tricks 

and modifications. The adaptive flight control 

systems, which are presented in this paper, 

were designed to provide invariant aircraft 

response characteristics throughout aircraft’s 

atmospheric flight envelope.  

The contributions of this paper are: an 

adaptive control system with neural network 

and adaptive controller, a complex system for 

the neuro-adaptive control of the aircraft 

movements and a system for the parametric 

estimation and discrete optimal command of 

aircraft longitudinal and lateral movements. 

So, the purpose of this paper is the design and 

software implementation in Matlab/Simulink 

environment of the three systems. By 

comparison with other adaptive algorithms 

from the specific literature, the authors’ 

adaptive flight control systems are 

characterized by simplicity, proper function 

and dynamic stability. The study of the 

algorithms convergence and stability has 

been made by the paper authors by complex 

numerical simulations. The stability of the 

presented systems is obvious from the 

analysis of the system responses. 

mailto:Lma1312@yahoo.com
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The paper is organized as follows: the design 

of the two new systems for aircrafts 

identification and neuro-adaptive command 

are given in section 2; the design of the 

system for the parametric estimation and 

discrete optimal command of aircraft 

longitudinal and lateral movements is 

presented in section 3; three numerical 

examples are included in section 4; finally, 

some conclusions are given in section 5. 

2. Systems for the Aircrafts Iden-

tification and Neuro-Adaptive 

Command 

The contribution command system in Figure 

1 consists of a neural regulator, a conven-

tional regulator and an identification neural 

network. It is used, with good results, to the 

stabilization of the aircraft longitudinal and 

lateral movements. This system works in two 

regimes: identification regime (I) and 

automatic control (R). In the identification 

stage (the switch has position I) the system is 

an open loop one (the signal is simultaneous 

applied to the control system and to the 

neural network and it is given by a signals 

generator block).  

After the identification process, the switch 

passes on the position R (automatic 

command); the input of the system is:  

,uuuu
cR

   (1) 

where cu  is the command signal given by a 

conventional regulator and u  the output of 

the neural regulator.  

The neural regulator must model (form) the 

inverse of the neural network function; the 

neural regulator model must be ;Â 1  Â  is 

the neural network model for the estimation 

of the control system model  .A  As input, 

for the neural regulator one chooses, for 

example, the error of the adaptive control 

system; ,ŷre   r  is the reference of the 

system, while ŷ  is the output of the neural 

network. 

The neural regulator is modeled by a feed-

forward network with the error ;* uue   
*u  is the imposed output of the neural 

regulator, while u  is the current output of 

the neural regulator. For the calculus of ,*u  

we start from the idea that, in stationary 

regime, the error e   tends to zero in the same 

time with the adaptive system error .e   

Imposing uuee  *  and uu   

 ,0
c

u  we get: 

.* ueueu    (2) 

The training of the neural regulator stops 

when  ;00  ee  in that moment we 

remark that *uu    .0
c

u  Thus, on the 

direct way of the adaptive control system, we 

obtain the approximate inverse of the 

function from the feedback way, i.e. 

.1ÂÂ 1   When the switch passes on the 

position R (automatic control), the initial 

value of u  is considered to be the input of the 

identification neural network (this signal is 

given by the signals generator). 

Another paper contribution is the hierarchical 

 

Figure 1. The adaptive control system with neural network and adaptive controller 
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neuro-adaptive command system in Figure 2; 

it may also be used to the stabilization of the 

aircrafts movement. Its design is presented 

below. 

First of all, let us consider that the non-linear 

dynamic model of the aircraft is described by 

equation [6]: 

 
      

    ,,,

,,,,

0010
xtxttt

ttptutxfx




 (3) 

where x  is the state vector   ,1n  u  the 

command vector  1m  and p  the vector 

of the disturbances with dimension  .1n   

In the initialization stage of the neural 

network (NNx) one may use the linear 

control theory for the command of the non-

linear control system; the linear system is 

obtained by the linearization of the non-linear 

system (3). Thus, assuming that all deviations 

are small, system (3) may be approximated 

with the linear one: 

,)(

,

00
xtx

pDuBxAx




 (4) 

where p  (the vector of the disturbances) 

produces the deviation of the dynamic 

trajectory from the undisturbed reference one. 

The matrices ,, BA  and D  are calculated 

with respect to the undisturbed reference 

trajectory. 

We need to obtain an optimal command 

 *u which assures the convergence of the 

linear model trajectory to the reference 

trajectory. The expression of this optimal 

command is: 

  ,T1* xNPBRxKu    (5) 

where  mmR   is a non-singular matrix, 

   mnN  a symmetric matrix, K  the 

process gain matrix and P  the solution of 

the Riccati equation: 

.0T1T   QPBPBRPAPA  (6) 

In the training stage, the neural network 

(with four input neurons, five neurons in the 

only one hidden layer and only one output 

neuron) computes the command law with 

respect to the state vector 
m

xxx ~  (Figure 

2); the equation of the neural network is: 

  ,T bdWxgVu    (7) 

where W  is the input weights vector, V  

the vector of the output weights, d  and b  

the input and output biases and g  the 

vector of the sigmoid functions. 

 
For the determination of the optimal 

command *u  we use the Hamiltonian 

equation [7], [8]: 

 
,0

d

,,,d




u

tuxH
  (8) 

where   is the adjunct vector described by 

the equation 
      

x

tttutxH






,,,
 and 

H  is the Hamilton’s function: 

 
Figure 2. Complex system for the neuro-adaptive control of the aircrafts’ movements 
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   
 

    

 
    ;,,

,

,,,
,

,,

T

T

ttutxf
x

txI

ttutxLt
x

txI
tutxH































 

the functional 

          
1

d,,,,

t

t

tuxLttutxJ  

attaches a well determined number 

       ttutxJttxI ,,,   

to the trajectory corresponding to an interval 

),[
1
tt . In the above equations the function 

    ttutxL ,,  has the form: 

    
    

    .,,
,,

,,

T

ttutxf
t

ttxI

x

txI
ttutxL 
















  

Because     ,,,,,,, tuuxHtuxH   the 

equation (8) becomes: 

0













u

x

x

H

u

H
  (9) 

or, taking into account the equation of the 

adjunct vector ,  it results: 

.0









u

x

u

H
   (10) 

By the discretization of equation (10), we get:  

    
 

 
 
 

.0
1

1
,











ku

kx
k

ku

kukxH
 (11) 

The equation of the adjunct vector   

becomes: 

     ,T tpQtGt
y
  (12) 

which assumes the knowledge of the external 

disturbance ;p  this fact is not possible in 

most of the cases and, that is why, in equation 

(12), the term  tpQ
y
  may be substituted by 

other term which expresses, more accurately, 

the effect of the disturbance. The disturbance 

affects the output vector of the nonlinear 

system  y  and the vector 
m

y  associated to 

the linear model. Thus, the disturbance 

influences the system error ;yre   r  is 

the reference (imposed) vector. So, the 

previous equation may be written: 

    ,)( T yrktGt   (13) 

where the matrix G  has the form 

 NPBBRAG   T1  and k  is a variable 

gain coefficient; without losing the 

generality, it may be chosen 1. If k  has other 

values  ,1k  a supplementary disturbance 

appears and it is compensated by the 

feedback loop (feedback after the output 

vector y ). Thus, the vector   may be 

calculated by the integration of equation (13), 

with .1k  The neural network NNc models 

an equation of form (7) and NNc is trained 

through the minimization of the error: 

,
2

ccc
uu    (14) 

where 
c

u  is obtained by using the formula: 

;
1

r
k

u
m

c
   (15) 

m
k  is the gain coefficient of the subsystem on 

direct way. When ,,(0
cc

uurye   

),(.ct,0,).ct **
sss

xhuuxx   

.ct* 
s

uu  and ct.;)()(,0  kuku
s

 

this is equivalent with 
smsm

xxx  ct.  

and .0~ x  Thus, one chooses a linear 

model as close as possible from the non-

linear model of the control system, whose 

state verifies, in an unperturbed regime, the 

relationship .xx
m
   

In the initialization stage, the model is 

brought in the state  0
mm

xx  by means of 

the optimal control law .*
mI

xKU   In the 

training stage of the neural network NNx, 

,* uUuu
Ick
   (16) 

where 
c

u  is the output of the network NNc 

(neural regulator); the input of the network is 

the deviation of the system output from the 

reference value .r  The imposed value is 

,/
mc

kru   because, at equilibrium, 
cm

uky   

;//
mmccm

krkyuuk   the adaptive 

component u  of the command law is the 

output of network NNx, whose input is the 

difference 
m

xxx ~  because of the 

disturbance p  and of the deviation of the 

model A  from the reference one. The 

imposed value *u  of the NNx’s output is 

calculated with respect to the adjunct vector 
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  (the solution of equation (13)); it depends 

on the error yre   generated by the 

disturbance .p  

3. Parametric Estimation and 

Discrete Optimal Command of 

the Aircrafts Movement 

The parametric estimation and discrete 

optimal command algorithm (ALGLDR) 

represents an important contribution of this 

paper authors. 

Let us consider the discrete dynamic model 

of the aircraft  A  which is described by the 

equations: 

)()(

),()()1(

kxCky

kuBkxAkx

d

dd




 (17) 

and the estimated discrete dynamic model 

 ,Â  described by the relationships: 

;)(ˆˆ)(ˆ

),(ˆ)(ˆˆ)1(ˆ

kxCky

kuBkxAkx

d

dd




 (18) 

ddd
CBA ,,  are the discrete variants of the 

matrices CBA ,,  from general state equations 

[9] and 
ddd

CBA ˆ,ˆ,ˆ  are the estimations of 

these matrices. 

Another way to describe the dynamics of the 

estimated control system  Â  is [10]: 

),1()(ˆ)1()1(ˆ  kekbkzky T  (19) 

where  

 ,)(ˆ)(ˆ)(ˆ)(ˆ

;)1(ˆ)1()1(

1
kkbkkb

kykyke

TTT 


 (20) 

with 

 

 ,)(ˆ)(ˆ)(ˆ)(ˆ

,)(ˆ)(ˆ)(ˆ)(ˆ

32

21

kbkbkbk

kakakak

m
T

n
T








 (21) 

 ;)1(ˆ),(ˆ),(ˆ
1

mpmmpbpnp   

 ,)()()(ˆ)1( kUkukYkz TTT   (22) 

with  

 
 ;)1()2()1()(

,)1(ˆ)1(ˆ)(ˆ)(ˆ





mkukukukU

nkykykykY

T

T



  (23) 

 .1)1(),1(ˆ  mmUnpY  If ,pm   the 

equation (19) becomes: 

);()(ˆ

)()(ˆ)(ˆ)(ˆ)1(ˆ
1

kUk

kukbkYkky

T

T




 (24) 

if ,pm   then )(ˆ kT  cannot be multiplied 

with the vector )(kU  because of their 

dimensions. That is why, in equation (24), the 

last term is expressed for each concrete case 

(function of the values of m  and p ). Thus, in 

the case of longitudinal movement of the 

aircrafts  ,1,4  mn  the equation (24) gets 

the form: 

),()(ˆ)(ˆ)(ˆ)1(ˆ
1

kukbkYkky T   (25) 

where  

 
 ,)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ

,)3(ˆ)2(ˆ)1(ˆ)(ˆ)(ˆ

4321
kakakakak

kykykykykY

T

T




 

1b̂  is a )1( p  vector, ŷ  is a )1( p  vector 

and )(ku  is a )11(   vector.  

 

Figure 3. The system for the parametric 

estimation and optimal command  

For the case of lateral movement of the 

aircrafts   ,,2,4 pmn   the equation 

(24) becomes: 

;)1()(ˆ

)()(ˆ)(ˆ)(ˆ)1(ˆ

2

1





kukb

kukbkYkky T

 (26) 

Y  and ̂  have the above forms, 
21

ˆ,ˆ bb  are 

)2( p  vectors, y  a )1( p  vector and u  

a )12(   vector. For the obtaining of the 

command law  ku  we choose the 

performance indicator: 

 
 

  ),()()1(ˆ)1(

)1(ˆ)1(

kRukukykyQ

kykyJ

T

T




 (27) 
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where )1( ky  is the imposed output vector, 

)( ppQ   and )( mmR   are symmetric and 

positive definite matrices. )(ku  is obtained 

from the optimum condition  ;0)(/  kuJ  

for the aircraft longitudinal movement, the 

authors obtained the equations [9]: 

 
  ,)(ˆ)(ˆ)(ˆ

,)(ˆ)(ˆ)1()(

1

1

11
QkbkbQkbRG

kYkkyGku

TT

T






  (28) 

while, for the aircraft lateral movement, )(ku  

and matrix G  are calculated as bellow: 

 
  .)(ˆ)(ˆ)(ˆ

,)1()(ˆ)(ˆ)(ˆ)1()(

1

1

11

2

QkbkbQkbRG

kukbkYkkyGku

TT

T





 (29) 

The matrices Q  and R  may be calculated, 

for example, by using ALGLX algorithm [9].  

The block diagram of the system for the on-

line parametric estimation and optimal 

command of the aircraft movements is 

represented in Figure 3. Below we present an 

original algorithm (ALGLDR) for the on-line 

parametric estimation and optimal command 

of the aircraft movements. 

ALGLDR algorithm 

Step 1: First of all, we make the off–line 

identification of the system by using, for 

example, the least square method; it results 

the parameters vector ;)0(ˆˆ
0 bb   that refers 

to the coefficients narjb
ij

,1ˆ,,1,ˆ    of the 

discrete transfer functions of the aircraft 

estimated model Â  (in Figure 3 switch “I” 

has position 1, e  is the system disturbances 

and 
a

uu  the random input); )(ˆ ty  is then 

calculated and the vectors )0(ˆˆ
0

YY   and 

)0(
0

UU   are memorized. The covariance 

matrix 
0

P  (obtained at the end of the 

identification )0(
0

PP  ) is also memorized. 

Then, the matrices 
dddd

BABA ˆ,ˆ,,  are 

calculated and, with these matrices, the state 

vectors x  and x̂  are computed by means of 

equations (17) or (18); these vectors (at the 

end of identification) are also memorized. 

Step 2: For the simulation of aircraft 

parameters time variation, these parameters 

are modified (for example with 5%) and, with 

the new coefficients, the matrices 
d

A  and 
d

B  

are calculated again. Because we have not, 

each second, the flight data from the aircraft, 

we simulate, without losing the generality, 

the on-line function of the system by 

permanent modification of the transfer 

function coefficients. This fact happens in 

reality: each second, the transfer functions 

associated to the aircraft movement change. 

Thus, the original algorithm (ALGLDR) may 

be considered an on-line algorithm for the 

parametric estimation and optimal command. 

Step 3: The switch “I” has now position 2 

(on–line control); by means of ALGLX 

algorithm, the matrices Q  and R  are 

obtained with respect to 
dd

BA ˆ,ˆ  and, after 

that, the matrix   
 CQCQ T  is calculated; 

C  represents the Moore – Penrose pseudo-

inverse of the matrix .C  

Step 4: The matrix G  from (28) or (29) is 

calculated with 
1b̂  extracted from .)(ˆ kb  

Step 5: The command )(ku  is obtained by 

using the equations (28) or (29) [9], [11]. 

Step 6: The vectors )1(ˆ,)1(  kxkx  are 

obtained with (17) and (18), respectively 

[12];  )1( ky  and )1(ˆ ky  are calculated 

with the formulas: 

.)1(ˆˆ)1(ˆ

,)1()1(





kxCky

kxCky

d

d
 (30) 

The vectors )1(ˆ kY  and )1( kU  are 

memorized and the error: 

)1(ˆ)1()1(ˆ  kykyke  (31) 

is obtained. 

Step 7: The actualization of the covariance 

matrix is made with the formula [13], [14]: 

;)(
)1()()1(

)1()1(
)(

)()1(

kP
kzkPkz

kzkz
kP

kPkP

T

T








 (32) 

  is a constant with the value .1  By 

using the equation (32), the actualization of  

the vector: 

)1(ˆ)1()1()(ˆ)1(ˆ  kekzkPkbkb   (33) 

is performed. In equation (33), )1( kz has 

the form (22). 
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Step 8: We increase the step value of 

k  1 kk , we return to step 4 and the 

steps 5, 6, 7 and 8 are repeated until 

.
imposed

kk   When ,
imposed

kk   the program 

stops and the obtained state variables )(txi  

and )(ˆ tx
i

 are plotted. 

4. Numerical Simulation Results 

We use the system in Figure 1 to the 

stabilization of the longitudinal movement of 

the aircrafts. The dynamics of the aircraft 

longitudinal movement is: 

 

;
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(34) 

where x  is the state vector,  
p

 the aircraft 

elevator deflection, V̂  the non-dimensional 

flight velocity, ̂  the non-dimensional 

attack angle, ̂  the non-dimensional pitch 

angle, 
y

ˆ  the non-dimensional pitch 

angular rate; the matrices DCBA ,,,  have the 

following forms [15]: 

 

    .0,0100,28000

,

67.3049.384212.0

1000

10336.0

01.0025.0026.0





























DCB

A

T

 (35) 

We consider that the elevator deflection  
p

  

is the only input of the system and that the 

non-dimensional pitch angle  ̂  is the single 

system output. The input of the control 

system and of the neural network (NN) is 

ramp type within 2 seconds, with a slope of 

0.05 rad/sec followed by a saturation zone 

with the amplitude rad1.0
p

u  [9].  

By using a simulation program (made by the 

paper authors in Matlab environment) the 

neural regulator and the neural network are 

trained. The training of the neural regulator 

and of the neural network stops when 

0e  ( 0e  and 0e ); that means 

that the stopping time is when ;ˆ ryy   

we have chosen rad209.0r  and 7.0
c

k  

(the gain coefficient of the conventional 

regulator; eku
cc
 ). The Matlab program 

plots the graphic of the mean square error of 

the identification neural network for its last 

training process depending on the training 

epochs number (Figure 4). In Figure 5 we 

represent the output of the control system 

 ty  (with red circles) and the output of the 

neural network  tŷ  (with blue solid line) 

after the last training process. These two 

signals overlap; that means that the 

identification process is successfully done. In 

Figure 6, the signals   tu*  the reference and 

   tu  the neural regulator output are plotted. 

Because these 2 signals overlap too, the other 

neural network training process is 

successfully done  .0e  The command 

signal of the adaptive control system   tu  is 

represented in Figure 7. 
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Figure 4. The mean square error of the neural 

network training process  
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Figure 5. The output of the control system and of 

the neural network after last training process 
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Figure 6. The signals  tu *  and  tu        
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Figure 7. The command signal  tu  
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Figure 8. Reference of the control system and the 

NN’s response after the last training stage 
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Figure 9. The error of the closed loop system 

In Figure 8 we represent the reference of the 

control system  tr  (red dashed line) and the 

neural network response after the last training 

stage  tŷ  (blue solid line). The error of the 

system   te  is represented in Figure 9; this 

error tends to zero in a short transient regime 

– 3 seconds.   

After the last training stage of the neural 

network training, the following weights have 

been obtained: 

 
 

;5451.0

,0.6736-   0.3140    0.2337    0.2614    0.9948-

,3.68-2.942.535-1.856-3.5

,
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after the last training stage of the neural 

regulator we obtained the weights: 

 
 

.3585.0

,0.2235-   2.0067-   0.0367    0.0120-   0.1880 

,1.167-0.3780.1621.699-0.437

,

0.7444      1.3832    0.3484-   0.9301-

0.0107    1.6810-     1.5959    0.4527-

2.5900     1.3111-     1.3235     2.0321 
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1
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b

w
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The stability of the control system is obvious 

from the graphical characteristics; thus, the 

identification processes are successfully done 

(the mean square error of the neural network 

training process tends to zero – Figure 4, the 

output of the control system and the output of 

the neural network are the same – Figure 5, 

the reference and the neural regulator output 

overlap – Figure 6). The system stability can 

be also remarked in Figure 8 (the output of 

the system  y  and its estimation  ŷ  tend to 

the desired input of the system  r ) and in 

Figure 9 (the difference between the system 

desired output and its nominal output tends to 

zero 0 yre ).                          

For the validation of the ALGLDR algorithm 

(block diagram in Figure 3), the authors made 

other Matlab/Simulink programs and tested 

this algorithm for the longitudinal and lateral 

movement of aircrafts. 
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Let us consider another form for the 

longitudinal movement of the aircrafts [16]: 
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where 
x

V  is the longitudinal component of 

flight velocity,   the aircraft attack angle, 

  the aircraft pitch angle, 
y

 the aircraft 

pitch angular rate and 
p

 the aircraft 

elevator deflection. The symbol   is used 

here to express the deviations of the nominal 

velocity, angles or angular rate from their 

desired values. 

Using, step by step, the AGLDR algorithm, 

we obtained the time variations of the 

variables ,ˆˆ,,ˆˆ,
2211

 xxVxVx
xx

  

0 1 2 3 4 5 6
-20

-10

0

10

20

0 1 2 3 4 5 6
-10

-5

0

5

10

15

0 1 2 3 4 5 6
-15

-10

-5

0

5

0 1 2 3 4 5 6
-20

-10

0

10

20

0 1 2 3 4 5 6
-30

-20

-10

0

10

20

Time [s]

Time [s]

Time [s]

Time [s]

Time [s]

i
x

i
x̂

i
x

i
x̂

i
x

i
x̂

i
x

i
x̂

i
x

i
x̂




m
/s

ˆ
,

1
1

x
x




de
g

ˆ
,

2
2

x
x




de
g

ˆ
,

3
3

x
x




de
g/

s
ˆ

,
4

4
x

x




de
g

p


 

Figure 10. The dynamics of the state variables and their estimations  

for the aircraft longitudinal movement by using  the ALGLDR algorithm 
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Figure 11. The dynamics of the state variables and their estimations  

for the aircraft lateral movement  by using  the ALGLDR algorithm 
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in Figure 10 (the states 
i

x  blue solid line, 

their estimates 
i

x̂  red dashed line). 

The ALGLDR algorithm is also tested for the 

lateral movement of the aircrafts. We 

consider the lateral movement of a Boeing 

747 which flies with Mach number 8.0M  

at the altitude ;ft40000H  the state 

equation corresponding to the aircraft 

movement in longitudinal plane is [9]: 
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where   is the sideslip angle, 
x

 the roll 

angular rate, 
z

 the yaw angular rate,   

the aircraft roll angle, d  the deflection of 

the aircraft direction and e  the deflection 

of aircraft ailerons. In this case, the symbol 

  also expresses the deviations of the 

variables 
xz

 ,,  and   from their desired 

(imposed) values. 

Using again, step by step, the AGLDR 

algorithm, we obtained the time variations of 

the variables ,,ˆˆ,
211 z

xxx   

,,ˆˆ,,ˆˆ
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d
ux 

14
,ˆˆ   and 

e
u 

2
in Figure 11 

(the states 
i

x  blue solid line, their estimates 


i

x̂  red dashed line). 

The estimation processes are successfully 

achieved (the four state variables 
i

x  and the 

four estimated state variables 
i

x̂  overlap). 

Moreover, the stability of the system is 

assured by the stationary values of all the 

state variables; all the state variables are 

expressed as deviations (the symbol  is used 

for this) of their nominal values from their 

desired values. That is why, when ,0
i

x  

the variables 
i

x  tend to their desired value 

(these values are imposed, during the flight 

by the aircraft pilot). 

5. Conclusions 

The paper presents new systems for the 

identification and neuro-adaptive command 

of the aircrafts and a new system for 

parametric estimation and discrete optimal 

command with direct applicability to the 

control of the flying objects movement. The 

identification/estimation and the automatic 

command algorithms represent paper authors’ 

contributions. Also, the block diagrams of the 

three presented systems (Figure 1, 2 and 3) 

are original issues and may be used with 

good results to the command and control of 

aircrafts or rockets. The theoretical results are 

validated by three numerical simulations in 

Matlab/Simulink environment. The command 

system presented in Figure 1 consists of a 

neural regulator, a conventional regulator and 

an identification neural network. This system 

works in two regimes: identification regime 

(I) and automatic control (R). The neural 

regulator must model (form) the inverse of 

the neural network function. Another new 

neuro-adaptive command system, which may 

be used to the stabilization of the aircrafts 

movement, is the original hierarchical 

structure in Figure 2. It is characterized by an 

initialization stage and a training stage (the 

two neural networks – NNc and NNx are 

trained). 
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