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This paper presents the design of a new reduced order observer to estimate the state for a class of
linear time-invariant multivariable systems with unknown inputs. The proposed design approach is
a combination of the approaches proposed by Hou & Muller [11] and Boubaker [4]; matrix
decompositions, state transformations, and substitutions based on coordinates change are used. It
will be shown that the problem of reduced order observers for linear systems with unknown inputs
can be reduced to a standard one (the unknown input vector will not interfere in the observer
equations). The effectiveness of the suggested design algorithm is illustrated by a numerical
example (aircraft lateral motion), and, for the same aircraft dynamics, we make a comparison
between our new observer and other already existing observers from the existence conditions and

dynamic characteristics’ point of view; the superiority of the new designed observer is demonstrated.
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1. Introduction

A. Antecedents and motivations

A state observer is a dynamical system allowing the state reconstruction
from the system model and the measurements of its inputs and outputs. The plant
input and output signals are used to estimate the plant state, which is then
employed to close the control loop [13]. The aim of the observers is to augment or
replace sensors in a control system. Starting from the first observers, introduced
by Luenberger, the observers for plants with both known and unknown inputs
have been developed resulting in the so-called unknown input observer (UIO)
architectures, such as, for example, those in [6, 7, 12, 17, 23].

A physical process is often subjected to disturbances which have as origin
the noises due to its environment, uncertainty of measurements, fault of sensors or
actuators. These disturbances affect the normal behavior of the process and the
estimation of these disturbances is needed in order to conceive a control strategy
able to minimize their effects. Disturbances are called unknown inputs if they

affect the process input, their presence making difficult the state estimation [1].
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The state estimation problem for linear time-invariant (LTI) multivariable
system, subjected to unknown inputs, has received considerable attention in the
last decades [3, 7, 15, 24, 26]. The dimension of the observer is considerably
increased in [1] and, that is why, the approach of Wang et al. [26] is more
interesting; they proposed a method to design reduced order observers without
any knowledge of these inputs; existence conditions for this observer have been
provided by Kudva et al. [15]. Silverman's inverse method [24], the generalized
inverse matrix, and the singular value decomposition are useful in linear
observers’ design process [7].

Generally, observers can be designed for singular systems, unknown input
systems, delay systems, and also uncertain system with time-delay perturbations
[1, 8, 26]. There are 2 categories of papers describing observer design methods:
the first one supposes a priori knowledge of information on these non-measurable
inputs, while the second category proceeds either by estimation of the unknown
inputs, or by their complete elimination from the equations of the system [1].

The design of the observers depends on the type and the complexity of the
considered model. Two types of models are distinguished according to the linear
or nonlinear character of the system [14]. Linear models have simple structures
and they are the base of several applications and research works. In such cases,
observers can be designed for uncertain systems with time delay perturbations
[26] and unknown input systems [7]. However, in the majority of real cases the
nonlinear nature of the process cannot be neglected. The assumption of linearity is
checked only locally around an operating point. Real physical processes present
complex behaviors with nonlinear laws. Because it is not easy to design an
observer for a nonlinear system, the multiple model approaches constitute tools
which are largely used in the modeling of nonlinear systems [14].

Easily verifiable system theoretic conditions, which are necessary and
sufficient for the existence of UIOs, have been established (see [10] or [11]). One
possible statement of these conditions is that the transfer function matrix between
the unmeasurable input and the measured outputs must be minimum phase and
relative degree one [9]. New conditions for the existence of reduced order linear
functional state observers for linear systems with unknown inputs were presented
in [25]. Systematic procedures for the synthesis of reduced order functional

observers have been given, the attractive feature of the proposed observer being



the simplicity with which the design process can be accomplished [25].

One of the most important algorithm for the design of reduced order
observers for LTI systems with unknown inputs was suggested by Hou & Muller
[11]; his reduced order observer for linear systems with unknown inputs
decomposes the state equation of the system into two subsystems: the first one
depends on the unknown inputs, while, in the second one, the unknown inputs
may be dropped. One of this approach’s assumptions is that the state of the second
subsystem may be obtained through the measurement equation. The designed
observer has good results but there are many situations in which this hypothesis
does not hold [11]. Maquin et al. made some modifications to the observer of Hou
& Muller and a straightforward treatment allowing the unknown input estimation
is proposed in [19]. Other important algorithm for the design of reduced order
observers for LTI systems with unknown inputs was suggested by Boubaker [4];
any reduced order observer has the advantage of avoiding redundancy caused by
reconstructing accessible states; transformations and substitutions based on
coordinate system are used and existence conditions are provided.

The observer design problem is a very important problem that has various
applications such as output feedback control, system monitoring, process
identification, and fault detection [5]. The basic idea behind the use of observers
for fault detection is to estimate the outputs of the system from the measurements
by using some type of observer, and then construct the residual by a properly
weighted output estimate error. By means of a fixed or adaptive threshold, the
residual is examined for the likelihood of faults and certain decision rules can then
be applied to determine if a fault has occurred [22].

For the majority of the existing approaches, the number of unknown inputs
must be less than the number of outputs, and, moreover, additional structural
requirements on the system to be observed are met [28]. Those conditions turn out
to be rather restrictive because, for instance, they cannot cover the simplest class
of mechanical systems with unknown inputs wherein only the position is
measurable [2]. Another disadvantage of observers is that only asymptotic
convergence to zero of the observation and error is guaranteed [20]. However, for
instance, for hybrid systems, the finite time exact observation is quite important
because the time of observation convergence must be less than the dwell time; for

example, this happens in the case of walking robots [16].



We may conclude that there are a lot of observers for linear systems with
unknown inputs. There are 3 important design methods: geometrical methods
(introduced first time by Bhattacharyya [3]), algebraic methods (used in observer
design by Kudva et al. [15], Hautus [10], Hou & Muller [11], Darouach et al. [7],
Yang & Wild [27], O’Reilly [21] and so on), and methods that use the generalized
inverse [4]. Each of them has advantages and disadvantages; achieving less
restrictive existence conditions and more direct design procedures have always

been a challenge in this area [5].

B. Main contribution

The classical reduced order observers are easier to be implemented from
the software point of view; their disadvantages are related to the important
number of constraints (existence conditions). This paper presents a new reduced
order observer design for the estimation of the system state vector and unknown
inputs. It will be shown that the problem of reduced order observers for linear
systems with unknown inputs can be reduced to a standard one (the unknown
input vector does not interfere in the observer equations). The existence
conditions for the obtained observer are also given. The new observer will be
obtained by combining other two reduced order observers: the first one has been
suggested by Hou and Muller [11], while the second one belongs to Boubaker [4].
Moreover, a comparison between our new observer, the Boubaker observer, and
the Hou & Muller observer is achieved; the superiority of the new designed
observer is demonstrated from the dynamic characteristics’ point of view and
from the constraints’ point of view. Our new observer main advantage is proved
to be the lack of apriori restrictions on the class of systems that can be considered.

The paper is organized as follows: the design approach of the new reduced
order observer (ALGLIN algorithm) is given in section 2; in the same section, the
observer is validated by means of a numerical simulation for the case of an aircraft
lateral motion. A comparison between our new algorithm and other two design

approaches isachieved in section 3. Finally, some conclusions are shared in section 4.
2. Design of the new reduced order observer

A. Problem statement
In this section of the paper we design a new observer for the state

estimation problem in the case of LTI systems with unknown inputs. The approach
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is original and it represents the main contribution of the paper. The observer has
been obtained by combining other two reduced order observers: the observer
designed by Hou & Muller [11] and the Boubaker observer [4]; two additional
“while” loops have been added in the design procedure in order to obtain a reduced
order observer without existence conditions. The new algorithm must make the
design problem equivalent with the standard problem of the observers’ design
when all inputs are known. In order to obtain a better observer, we will also focus
on the design procedure which also must be direct and simple.
Let us consider an LTI system described by [4]:
Xx=Ax+Bu+Dd,y=Cx, 1)
where x e ® ™ is system state vector, u € ® P! — system known input vector,
d e ! — system unknown input vector, and y e ™ — output vector; known
matrices A, B,C, D have appropriate dimensions (A &™ Be&™?,C e ™", D e g").
The state vector is divided into two state vectors: the first one is associated
to the unknown inputs, while the second one depends on the system known inputs.
We make a coordinate change by choosing a matrix N e ® ™) such that
T =[N D] is nonsingular and we transform the old system state (x) into a new

one (x) by using the transformation [19]:

T

x=Tx =T[%' %', )

with x, e ™, %, e ® "™+, Equations (1) are equivalent with [4]:

X = AX+Bu+Dd,y=Cx, (3)
where the matrices A, B,C, and D have the forms:
A =T71IAT = {511 52} B=T1B= {@}
A21 A22 2

4)
D=T'D= {O(“IS)*S},E =CT =[CN CD] = [51 62]?

S

matrices in the above equation have appropriate dimensions: A, e ™™, A, e ™),
'E‘21 e g (-mpm Kzz e g (-mx(n-m) §1 e R™P, §2 e ® (-mxp C_:l e ® ™M 62 e g m(n-m),
The partitioning of x points out the decomposition of the system (1) into

an unknown-input depending subsystem and an unknown-input-free subsystem.

Therefore, combining (2) and (4), we obtain [4]:



= A% + ALX, + B,
X, = A, X + A%, + Bou+1.d, (5)
y = C,X, +C,X%, .
X, depends on the unknown input d, while %, does not; therefore, it is more
judicious to estimate x, rather than x,. As a consequence, we design a reduced
order observer for the estimation of the state x, by using the equations:
);(1 = 'Kll)_(l + 'E‘lz)_(z + §1u , (6)
y =C,X, +C,X, ;

A

x, and d (the estimations of %, and d, respectively) will be calculated with

respect to x, (the estimation of x,).

B. Design of the reduced order observer

The design of the new observer is concentrated into the following theorem:

Theorem 1:
Consider the LTI multivariable system (1); using the assumptions n>m, n>s, and
(C, A) is an observable pair of matrices, we design the convergent reduced order

observer for LTI systems with unknown inputs described by equations:

X, = (A —LC, )% +(LHL, + E, )y + Bu, %, = K,R,}GTH] (y - C,%,), -
d=U,y-Uy-U% -U,ux=Tk =T[5 1],

where H,, e ™" is a sub-matrix of an orthogonal matrix H, = [H,, H,,] e & ™",

C = H;261 1 'Z& = 'Kn - 'KlszRilGTH;(_:l , gl = El’ El = 'KiszRilGTH;vGT = [In—m 0]1
while R, (a non-singular matrix) and K, (an orthogonal matrix) are obtained by

expanding the full column rank matrix C, as following:

C, = H,[R} 0] KF; ®)
L is calculated by choosing desired eigenvalues for the matrix (,&1 - LCl), such that
(Kl — LCl) is stable, while the matrices U,,U,,U,, and U, have the expressions:

U, = K,R;’GTH] ,

, = K,R,GTH]C, (LHE, + E, )+ A,,K,R;1GTH]
3 = Ksz_le‘THzTC_:l(Ai - LC1)+ KZl - KzszRz_lGT ch—:1 )
. = K,R;'GTHJC,B, + B, .

c

(9)

cC C

Proof:

The expand of the matrix C, (equation (8)) [11, 19] leads to the obtaining of the
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following matrices: H, € ® ™", R, €  ™™-0-m K e g (=-m<n-m) - analyzing the
dimensions of the matrices R,,K,, and D, new necessary conditions for the
observer design results:
n-m>0,n—s>0. (10)

In (8) the matrix H, must be orthogonal (H2 H, = |m), while R, must be
nonsingular.

Next, by partitioning the matrix H, as follows [11, 19]: H, =[H,, H,,],
we obtain the matrices H,, € ™™™, H,, e ™™, and we denote [11]:
1y =[Ha My =57 5.7 ] (11)

the third equation (5) becomes: y = C,%, + H,[R] 0] KI%,. Left pre-multiplying

<l
Il
I

both sides of the previous equation by H] we obtain:

- R, HZ, HJ = R,
Hly = HJC,X, + HJH, KIX, < y = C,X, + KIx, (12)

T T
In H22 H22

and the measurement equation may be decomposed as follows:

{71 = HJ.C,X, + R,K] %y, (13)
Y. = CiXp,
where C, = HLC, . Now, with the notation G = [1,_,, 0], one yields:
- T oo o _
Y. = [In—m 0] [le Y2T] =Yy =G"y. (14)
Using the first equation (13) we write [11]:
X; = (RzK; )71(371 - Hlec_:l)_(l) = (RzK; )l[GT H;y - Hglél)_(l] (15)
y
or
X, = K,R;1GTH] (y - 517(1); (16)

Equation (16) has been obtained by using the equality (R,KI )" = K,R;?
(K, —orthogonal matrix) and the equation: GTH] =1, O][H,, H,,]" =H],.

Substituting x, (expression (16)) into the first equation (6) we find [11]:

X% =A% +Bu+EY, (17)

with
A = Ay - AKRIGTHIC, B, = B, ,E, = A,K,R;'GTH]J . (18)
In order to design the observer, the pair (Kl ,Cl) must be observable or at

least detectable. After the fulfillment of this condition, following the conventional
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Luenberger observer design procedure, we design a reduced order observer for the
unknown input free equation (17) as following [11, 19]:

>i<l = (,5\1 - LCl)f(1 + (LH L+ El)y +BU. (19)
Equation (19) has been obtained by using the expression: LC,X, = Ly, = LHJ,y;
the matrix L is chosen such that c(f&l - LCl) — C_ (the matrix A, — LC, is stable).

If the condition is fulfilled, L has been obtained properly and the observer error

converges asymptotically to zero (the proof is presented in [11] and [4]).
By means of (19), we determine x, and, after that, by using (16) we obtain:
%, = K,R3*GTHI (y - C.%,); (20)
the unknown input vector d is calculated from (5) as follows:

2~ Ku)i(l - Kzz)i(z - E2uv (21)

x>

dA =
where >i<2 has the form:

% = K,Ry*GTHI [y - (A, - L, )%, |- K,Ry'GTH] [E,(LHE, + E)y + C.Bu]. (22)
Next, substituting (22) into (21) we find:
d=U,y-U,y-U,X -U,u, (23)
where the matrices U;, Uy, Ug, and Uy have the forms (9).
The vector x is determined by the concatenation of the vectors x, and X, ,

while the estimated state vector % is calculated by means of an equation similar

with (2); the theorem 1 is now demonstrated.

Remark 1:
The second condition (10) has been considered an assumption in the theorem 1
because the number of system unknown inputs (s) is commonly less than the

number of states (n); moreover, the first condition (10) is an assumption for the

approach because it generally holds; otherwise, it may be easily fulfilled by a

judicious choice of matrix C.

Remark 2:

In order to reduce the observer constraints’ number and to obtain a reduced order
observer without existence conditions, we add in the design procedure two
“while” loops. Because one of the existence conditions of the observer is related
to the matrix C,, the first “while” loop is used to obtain a full column rank

matrix C, , an orthogonal matrix H, , and a nonsingular matrix R, . On the other
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hand, to eliminate another constraint of our new approach (the pair (/11 ,cl) must
be observable or at least detectable), a second “while” loop is introduced. Thus, if
the pair (/11 ,cl) is not observable or at least detectable, we return to the selection

of the matrix N, coordinates change (2), calculation of the matrices A,B,C,D,

and so on; we repeat all these operations, in a second “while” loop, until this
existence condition is fulfilled. There in no risk for an infinite “while” loop and,

therefore, the approach will always provide an observable or at least detectable

pair of matrices (A, ,C, ).

Remark 3:
In two similar approaches (Boubaker observer and Hou & Muller observer,

respectively) no remedy for the non-observability of the pair (Rl ,Cl) IS presented;

that is why, these two approaches have a disadvantage with respect to our new
approach and, as a consequence, we obtained a design algorithm with a greater
generality due its second “while” loop.

The observer design procedure for the state estimation problem in the case
of LTI multivariable system, subjected to unknown inputs, is based on the
ALGLIN algorithm, which is summarized below:

Step 1: We check if rank(CD) = rank(D),n > m, and n > s; if first two conditions

are not met, we choose other matrix C ) to satisfy the two conditions; the number

of system unknown inputs (s) is commonly less than the number of states (n).
Step 2: We choose the matrix N such that the matrix T = [N D] is nonsingular;
Step 3: The change of coordinates (2) is performed and the matrices A,B,C,D
are calculated; these 4 matrices are partitionated and the matrices A, A, A,
A,,.B,,B,,C,,C, are determined;

Step 4: We check if C, is a full column rank matrix. If C, is not a full column

rank matrix, we return to step 2 and we repeat the steps 2-4 until the condition is

fulfilled; otherwise, C, is written under the form (8) and the matrices H,,R, , K,

are obtained. The 3 matrices are calculated until we obtain a nonsingular matrix

R, and two orthogonal matrices H,, K,;
Step 5: H, is partitionated (H, = [H,, H,,]) and the matrices H,, and H,, result;
Step 6: C, is calculated by means of equation: C, = HLC, ;

Step 7: Using (18), we determine A, B, , E, . We check if pair (A, ,C, ) is observable
9



and, if the condition holds, we go to the next step; otherwise we return to step 2
and we repeat steps 2-7 until the fulfillment of the observer existence conditions;
Step 8: The Luenberger observer described by equations (19) is designed, the

matrix L being chosen such that cs(ﬂ1 - LCl)e C_. The reduced order observer
estimates the vector x, ; its estimation ()‘(1) is obtained;
Step 9: x, is calculated by means of (20);

Step 10: We calculate the matrices U,,U,,U,,U, (equation (9)) and, after that, the

unknown input vector d is obtained by using (23);
Step 11: x is determined by the concatenation of the vectors %, and x,, while

the estimated state vector & is obtained by using an equation similar with (2).

The new reduced order observer with unknown inputs reconstruction has 3

assumptions (n > m,n > s, (C, A)— observable pair of matrices) and 4 existence
conditions (constraints): 1) rank(CD) = rank(D); 2) C, is a full column matrix; 3)
the matrix R, is nonsingular, while the matrix H, is orthogonal; 4) the pair

(Kl ,Cl) is observable or at least detectable. Condition 1) is sometimes called the
observer matching condition, and it is the analogue of the well-known matching
condition for a sliding mode controller to be insensitive to matched perturbations.
This condition may be met easily by a judicious choice of matrix C (the choice of
the output vector y); the existence conditions 2) and 3) are met in the first “while
loop” by choosing a suitable matrix N, while the fulfillment of the constraint 4) is
made in the second “while” loop. If condition 4) is fulfilled, the observer gain matrix
L has been obtained properly, the dynamics of the observer error has a homoge-
neous form, and, therefore, the observer error converges asymptotically to zero.

In conclusion, choosing a suitable matrix C, a suitable matrix N (first
“while” loop), and an observable pair of matrices (,&1 : Cl)— second “while” loop,
all the existence conditions for the observer design are met. In these circumstances,

our approach has no existence conditions and only 3 assumptions.

Remark 4:

The only minor disadvantage of our new observer with respect to other design

algorithms in the specialty literature is related to the use of pole placement

technique which is easy to implement but has some disadvantages: 1) it becomes

difficult to be used for systems with big order or for poorly controlled systems; 2)
10



if we choose fast poles for the observer, the advantage is that the observer
estimation error decays rapidly, but the disadvantage is that the system needs
perfect sensors and/or noise free environment; 3) if we choose slow poles for the
observer, the advantage is that the system is less sensitive to process disturbances
and measurement noise, but the disadvantage is that the observer estimation error
decays slowly. The use of the pole placement technique is not a fundamental
problem since most observers use this method for determination of the observer

gain matrix; therefore the disadvantage of our new observer is a minor one.

C. Validation of the ALGLIN algorithm
The validation of our new algorithm for a reduced order observer design is
performed, in this section, in Matlab/Simulink environment, for the case of lateral
motion of a Boeing 747 flying with 0.8 Mach number at the altitude H=40000 ft
[18]. Aircraft flight is often influenced by disturbances like longitudinal or
vertical wind shears, atmospheric turbulences or errors of the sensors. From the
aircraft dynamics’ point of view, these represent unknown inputs; an observer for
systems with unknown inputs must estimate these unknown inputs and, in the
same time, estimate the system states with very small errors. Here, we validate our
new reduced order observer for the case of an aircraft flight but the observer may
be used, with good results, in any other examples due to its generality character.
Because our new observer main advantage is the lack of apriori restrictions, we
have to know only the system linear dynamics and to put the dynamics under the
form of state equations (1); in our case, the state equations associated to the
Boeing 747 lateral motion have the form (1) with [18]:
x = [AB Ar Ap Ao ,u =[5, 8,[,
—0.0558 - 0.9968 0.0802 0.0415 0.0073 0
_| 0598 -0115-00318 0 | . |-04750123 . _ {1 00 o} (24)

0305 0388 -0465 O 0.153 1.063|’ 0010
0 0.0805 1 0 0 0

B is the aircraft sideslip angle, r and p are the yaw and roll angular rates, ¢ — the
roll angle, §, - the rudder deflection, and &, — the ailerons deflection, while A is
associated with the deviation of the variables from their nominal values; d € ® s**
is considered to be a vertical wind shear. In this simulation, the input signal is
calculated, by using the ALGLX algorithm [18]; thus, we consider the gain matrix

K (feedback of the closed loop system) and the input vector of the system
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u=[8 8,]" =-K%. We obtained the graphic characteristics in Fig.1 (the 4 states

x.,i =1,4— solid line and the 4 estimated states &,i =1,4— dashed line); the

graphics of the system states are superposed over the estimated states’ graphics.

3. Comparison between our new observer and other

observers for LTI systems with unknown inputs

In this section, we compare our new observer with other already existing
observers for LTI systems with unknown inputs. We briefly present 2 important
observers, representative for the research area of LTI systems with unknown
inputs, and we compare these observers with our new observer. These observers
have been designed by Boubaker [4] and Hou & Muller [11], respectively.

To briefly present the Boubaker observer, we consider the same LTI
system described by (1). All the equations (1)-(6) and the notations remain valid.

The observer design is concentrated into the following theorem:

Theorem 2 [4]:

Consider the LTI multivariable system (1); using the assumptions n > m and

(C,A) is an observable pair of matrices, we design the convergent observer for

LTI systems with unknown inputs described by the equation [4]:
%, = (,&1 - Lél)il +Bu+Ly,X, =U,y —U,CNX, , (25)
d=U,y+G% +G,y +Gyu, £ =Tx = T|x7 7],

where A =A,-AUCN,C, =U,CN E, =AU,,L=LU, +E,, L has been

calculated by choosing desired eigenvalues for the matrix (,&1 - Lél) such that

oA - LG, )cc , while U, e ™ and U,  (>-"*P have been obtained by

choosing a nonsingular matrix U = [CD Q],Q e & ("~ ;U has been partitioned

asU-t =[uJ UJ]". The matrices U and U must fulfill the condition [4]:

U uU,cb U I, 0
U = | [ep @) =| P Ui ; (26)
U, U,CD U,Q 0 Ip—m
the matrices G, G,, G, are calculated as below [4]:
G, = U,CN(LU,CN + A,U,CN)—U,CNA,, - A,, + A,,U,CN
G, = -U,CNLU, —U,CNA,U, — A,U, ,G, = -U,CNB, - B, .
The theorem proof is presented in [4]. Our new observer design approach

has borrowed from the Boubaker design procedure 5 steps: steps 1, 2, 3, 10, and 11).
12



The Boubaker observer has 2 assumptions (n > m, (C, A)— observable pair

of matrices) and 3 existence conditions (constraints). The first existence condition

of the Boubaker observer is related to the dimensions of the matrix Q; thus, the

observer first constraint is p>m. This constraint is sometimes difficult to be met
and no remedy is presented in the Boubaker approach; for example, if the LTI
multivariable system has only one known input, the observer can not be designed
(matrix C does not exist). Therefore, the observer may be designed and used only
for LTI multivariable systems with multiple known inputs. The other 2 Boubaker

observer existence conditions are given by the following two theorems [11]:

Theorem 3 [11]:
For the given system (1), observer (25) exists if and only if:

. slos — Ay —A
1) rank(CD) = rank(D); 2) rank| = " ! 21=n,(V)s € C,Rels} > 0.
) rnk(eD) - rnk(0); ) ran o A" A () < e
Theorem 4 [11]:
If rank(CD) = rank(D) = s, then the following statements are equivalent:

1) pair (A,,C,) is observable or at least detectable; 2) rank{SI"—El; at —ng} .

(v)s € C,Refs} > 0; 3) rank{SI”C_ A ﬂ =n+s,(V)s e C,Refs} > 0.

The disadvantages of this observer are related to the number of existence
conditions: 1) the number of system outputs is less than the number of system
known inputs; 2) rank(CD) = rank(D); 3) the pair (5\1,51) is observable or at least
detectable. Condition 2) is not a serious problem because it may be easily fulfilled
by a judicious choice of matrix C; condition 1) is very restrictive and it represents
a serious problem in the case of LTI systems with only one known input. If
condition 3) is not met, the algorithm stops; no solution for solving this problem is
included in the Boubaker approach. In contrast with the Boubaker observer, our
observer solves this problem by means of a “while” loop which includes the steps
2-7. By a judicious choice of matrix C,, our algorithm has no existence condition
due to the “while” loops, while the Boubaker observer has 2 constraints without
any remedy. Our new observer has one additional assumption which generally holds
(the number of states is greater than the number of unknown inputs). Both design

procedures use the pole placement technique, this being a minor disadvantage.

13



The second observer presented in this section belongs to Hou & Muller
[11]. We consider the observable LTI system described by (1); Hou & Muller
observer can be designed only if C is a full raw rank matrix and D is a full column
rank matrix [11]. The matrix C can be conveniently chosen by selecting the
system outputs, while the matrix D, associated to the unknown inputs of the
system, can not be chosen by the designer. Considering the set consisting of these
two conditions as the first assumption of the observer for the state estimation of an

observable system, we perform the first matrix decomposition [11]:

D = H[RT 0]"KT, (27)
where H e ™ and K e ® ¢ are orthogonal matrices, while R € ® ¢ — non-
singular matrix. Using the coordinates change X = H'x,d = K'd, and the
decomposition of the new state vector x =[x, X,|",%, e R%%, X, e ("2, the

system (1) gets the form [11]:

B,u, (28)

with A =HTAH,B = HW,C‘::CH,K:P“ élz]ﬁz{?l]é:[c_:l C,; matrices
Por A B,

in the previous equation have appropriate dimensions: A, € >, A, € R >,
Kﬂ c R(n—s)xs, KZZ c R(n—s)x(n—s)' El € R>P, EZ c (lt(n—s)xpya1 c Rmxs,ez c (Kmx(n—s). Analyzing
the dimensions of the matrices A,, A, or A,,, it results a new necessary

condition for the design of the observer: n>s (the number of system unknown

inputs must be less than the number of system states). Because x, depends on the
unknown input d, while x, does not, it is more judicious to estimate X,; as a
consequence, Hou & Muller observer estimates the state X, , while the estimations
of x, and d are calculated with respect to x, (the estimation of x,).

Hou & Muller observer design is concentrated into the following theorem:

Theorem 5 [11]:

Consider the LTI multivariable system (1) written under the form (28); using the
assumptions n>s, (C, A) is an observable pair of matrices, C is a full raw rank
matrix, and D is a full column rank matrix, we design the convergent reduced

order observer for LTI systems with unknown inputs described by the equations:
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X, = (A, — LG, )%, + Bou + (D, + LHL )y %, = K,RAGTH] [y — C,5%, |, 29)
d = KR'X, — KRA,R{IGTH] y + (KRIRIGTH; C, - KRA, )X, - KRB,

where C, = H,[Rf 0]" K (C, must be a full column rank matrix, H, € ® ™™,
K, € ® > — orthogonal matrices, R, e ® > —nonsingular matrix), H, =[H,, H,,],
H,, € R™%,H, e R™™s) C, = HLC,,G™ =[I, 0],A, = A, - A, K,R'GTH/,
B, =B,,D, = A ,K,R'G™H/; L is calculated by choosing desired eigenvalues
for the matrix (A, — LC,) such that o(A, —LC,)c C_. Vector X is determined
by the concatenation of the vectors x, and x, , while the estimated state vector %

is calculated by means of an equation similar with (2). ALGLIN observer design
procedure has borrowed 6 steps (steps 4-9) from the Hou & Muller approach.

Hou & Muller observer has 4 assumptions (n>s, (C,A) - observable pair of
matrices, C - full raw rank matrix, and D - full column rank matrix) and 5

constraints: 1) rank(CD) = rank(D); 2) C, is a full column matrix; 3) matrix R is

nonsingular, while matrix H is orthogonal; 4) matrix Ry is nonsingular, while the

matrix Hy is orthogonal; 5) the pair (A, ,C,) is observable or at least detectable.

2 of the 4 assumptions (n>s, (C, A) - observable pair of matrices) is an
observable pair of matrices) are common to ALGLIN observer and Hou & Muller
observer; the observability of the pair (C,A) is met easily by a judicious choice of
matrix C, while the assumption n>s is generally valid. The other 2 assumptions
make the Hou & Muller observer less general than the ALGLIN observer, this
being the first disadvantage of the Hou & Muller observer with respect to our new
observer. The existence condition 1) is not a serious problem because it may be
fulfilled easily by a judicious choice of the matrix C. Constraint 2) is solved in the
ALGLIN algorithm by using a “while” loop; in the Hou & Muller observer no
solution is presented for the case when this existence condition is not fulfilled, this
being the second disadvantage of the Hou & Muller observer. The constraint 3) of
the ALGLIN algorithm is similar to the existence conditions 3) and 4) in the Hou
& Muller approach. If in the ALGLIN design procedure, the constraint is
eliminated by introducing the first “while” loop, in the Hou & Muller design
procedure no remedy is presented for the case when these two conditions are not
met (the third disadvantage of the observer presented in [11]). Finally, the
constraint 4) of the ALGLIN algorithm is similar to the existence condition 5) of

the Hou & Muller approach. If the pair (A,,C,) is not observable, the Hou &
15



Muller design procedure stops (the fourth disadvantage of the observer presented
in [11]) unlike the ALGLIN algorithm, where the second “while” loop (the loop
which includes the steps 2-7) assures the fulfillment of this constraint.

From the constraints and design point of view, the ALGLIN observer is
better, its main advantages being the lack of apriori restrictions on the class of
systems that can be considered. Now, we want to make a brief comparison
between our new observer and the 2 observers summarized in this section from
the dynamic characteristics’ point of view; therefore, we implemented in Matlab/
Simulink all the 3 observers by using the same aircraft dynamics, same flight data,
and same unknown input vector. Thus, in Fig.2 we represent the time histories of
the 4 state estimation errors for the ALGLIN observer (solid line), for the
Boubaker observer, and for the Hou & Muller observer, respectively.

From the dynamic characteristics’ point of view, the comparison between
the 3 reduced order observers for systems with unknown inputs leads to the
following conclusions: 1) All the 3 observers are convergent - the 4 components
of the state estimation error tend to zero); 2) ALGLIN observer is characterized by
a convergence speed of 3 seconds, while the convergence speed associated to
other 2 observers is about 4-5 seconds; this means an advantage of our new
observer from the convergence speed point of view (a decrease of 33.3-66.6 % of
the convergence speed); 3) The oscillations’ amplitudes of the state estimation
errors are smallest if the ALGLIN observer is used. For a correct comparison,
same desired eigenvalues have been used for all the three observers. Moreover, in
Remark 4 we specified the following well-known issue: “if we choose slow poles
for observer, the advantage is that the system is less sensitive to process
disturbances and measurement noise, but the disadvantage is that the observer
estimation error decays slowly”. Thus, for a correct comparison, the solution was
to choose the same slow poles for all the 3 observers; this way, the sensors’ errors
will not affect the measurements. On the other hand, although slow poles have
been chosen, our observer estimation error does not decay slowly, 3 seconds
representing a very good convergence speed in the research area of the LTI

systems with unknown inputs.

4. Conclusions

In this paper we design a new approach for the state estimation problem in
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the case of LTI multivariable systems with unknown inputs. The approach is
original and it represents the main contribution of the paper; the observer has been
obtained by combining other two reduced order observers: the observer designed
by Hou & Muller [11] and the Boubaker observer [4]. The effectiveness of the
suggested design algorithm is illustrated by a numerical example (aircraft motion),
and, for the same aircraft dynamics, we made a comparison between our new
observer, Boubaker observer, and Hou & Muller observer, respectively; the
superiority of the new designed observer has been demonstrated especially from
the constraints’ point of view (our new algorithm has 4 existence conditions, but
all of them can be eliminated by means of a judicious choice of the system outputs
and two “while” loops). The design procedure presented in this paper can be
extended in the future and a new observer with unknown inputs’ reconstruction
can be designed; it can be a subsystem (fault detection/diagnosis scheme) of a
typical fault-tolerant control system.
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Fig. 1 State estimation errors by using the ALGLIN algorithm
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