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The paper presents the automatic control of the aircrafts in the longitudinal plane during the 

landing process, taking into account the wind shears and sensor errors. Two automatic landing 

systems (ALS) are designed: the former uses an Instrumental Landing System (ILS), while the 

latter controls the flight altitude using the state vector. Both systems have a subsystem for the 

control of longitudinal velocity, which is based on the dynamic inversion theory. The subsystems 

for the pitch angle control use proportional-derivative control laws or a law based on the dynamic 

inversion theory and a proportional-integral-derivative controller. The slope and flare controllers 

are a proportional-derivative (PD) controller and a proportional-integral-derivative (PID) 

controller, respectively. The controllers are designed both in classical and fuzzy logic approaches. 

Theoretical results are validated by numerical simulations in the absence or presence of wind 

shears and sensor errors. The analysis of the main ALS parameter time evolutions leads to 

conclusions regarding the superiority of the dynamic qualities for the ALS with fuzzy controllers. 

Subject headings: Control systems, Fuzzy sets, Aircraft, Wind gusts, Sensors. 

Notation 

BA,  = matrices in the state equation 

BA,  = fuzzy sets in the antecedent (fuzzy systems) 

AA0  = flare curve of the landing process 

i
qA   = associated individual antecedent fuzzy sets of each input variable (fuzzy systems) 

0AAp  = aircraft trajectory for the first landing phase 

i
ka   = parameters of the linear function (fuzzy systems) 

ra  = acceleration applied along an arbitrary direction 

B  = sensor bias 

ib0  = scalar offset (fuzzy systems) 

d  = aircraft deviation in vertical plane with respect to the glide slope (GS) 

e = operating error of the fuzzy systems 
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f   = polynomial function (fuzzy systems) 

H  = aircraft altitude 

0H   = starting altitude for the flare phase of the landing process 

refH  = reference altitude 

cH  = imposed altitude for each point of the glide slope 

pH  = altitude at which the landing process starts 

i(t) = command variable in time (fuzzy systems) 

K   = scale factor of the sensor 

dp kk , = proportional gain and derivative gain (fuzzy systems), respectively  

h
pk  = proportional component of the reference angle control law r  

h
pik  = integral component of the reference angle control law r  

h
pdk  = derivative component of the reference angle control law r  

 

pp kk , = gains of the angle gyro and of the angular rate gyro, respectively 

cm  = calculated values of the variables m  

N = number of rules (fuzzy systems) 

R  = distance from the aircraft to the intersection point between the Runway and glide slope (GS) 

S   = sensor sensibility to the acceleration ra  applied along an arbitrary direction 

s  = cosine function (fuzzy systems) 

0T  = flight time for the wind shear 

ST   = sample period (fuzzy systems) 

0t  = starting time moment of the flare phase 

dt  = time moment when the aircraft touches the runway 

u  = command vector in the state equation 

0V  = nominal velocity of the aircraft. 

vxV  = longitudinal component of the wind velocity 

vzV  = vertical component of the wind velocity 

xV  = aircraft velocity along the axis Ox  (longitudinal axis of the aircraft) 

cxV  = desired velocity along the longitudinal aircraft axis 

xx VV


,  = outputs of the first order command filter 

v  = noise of the sensor 

vv  = vector of disturbances (it contains the components of the wind velocity along aircraft axes Ox  and Oz ) 

)(xiw  = degree of fulfillment of the antecedent (the level of firing of the i
th

 rule in fuzzy systems)  



x  = aircraft horizontal displacement 

x  = state vector 

x  = aircraft horizontal velocity 

x  = input vector (fuzzy systems) 

x   = independent variable on the universe (fuzzy systems) 

leftx  = left breakpoint (fuzzy systems) 

qx   = individual input variables 

rightx   = right breakpoint 

y   = crisp function in the consequent (fuzzy systems) 

iy   = first order polynomial function in the consequent (fuzzy systems) 

,z  = fuzzy functions 

  = attack angle of the aircraft 

p   = aircraft elevator deflection 

T   = command of the aircraft engine 

e  = change in error (fuzzy systems) 

K  = calibration error of the sensor scale factor 

  = aircraft angular deviation  

  = aircraft flight path angle 

c  = imposed glide slope of the aircraft 

   = output angular rate (the perturbed signal) 

i  = angular rate (input of the error model)  

y  = pitch angular rate of the aircraft 

  = time constant of the aircraft movement (glide slope phase) 

  = aircraft pitch angle 

c   = calculated pitch angle of the aircraft 

r  = pitch reference angle of the aircraft 

   = input of the command filter 




 = input of the command filter 




 = input of the command filter 

  ,  = aircraft angular rates 

c
   = calculated pitch angular acceleration of the aircraft 



I. Introduction 

The first Automatic Landing System (ALS) was designed in England in 1965. From that moment, most aircrafts 

have ALS based on the Instrumental Landing System (ILS) for the aircrafts control (Donald 1990; Aron et al. 1989), 

which use proportional-derivative (PD), proportional-integral (PI) or proportional-integral-derivative (PID) 

conventional laws for the altitude and descend velocity control (Singh and Padhi 2008; Juang and Cheng 2006; 

Lungu 2008), and PD or PID conventional laws for the pitch angle and pitch rate control. These control laws use the 

state vector or the dynamic inversion concept and they have a command filter, dynamic compensators, and state 

observers (Lungu 2008; Che and Chen 2001; Kang and Isidori 1992; Kawaguchi et al. 2008; Calise and Rysdyk 

1999; Pashilkar et al. 2006; Lungu 2000). 

The use of GPS and the performance increase of the sensors for the angular variables measurement lead to the 

increase of the landing trajectory track accuracy (Lungu 1997; Aron and Lungu 1994; Lungu and Grigorie 2005; 

Grigorie 2007). The sensor errors must have an insignificant influence on the landing process performances. 

For different flight conditions, the controlled parameters should be kept in a specific flight envelope, defined by 

the Federal Aviation Administration (FAA). The environment conditions required by FAA are: head wind – 25 

knots, rear wind – 10 knots, lateral wind – 15 knots, moderate turbulence, wind shears of 8 knots per 100 ft at 200 ft 

to touchdown (Che and Chen 2001; FAA 1971; Niewoenhner and Kaminer 1996). If the flight conditions are outside 

the specific envelope, then the ALS is disabled, and the pilot takes the aircraft control. It is possible that a non-

experienced pilot does not succeed in controlling the aircraft during the landing process. According to the 

international statistics, 62% of aircraft accidents are due to the atmospheric disturbances (wind disturbances). 

In recent years lots of scientific researches have applied the intelligent concepts for the aircrafts automatic 

control during the landing process; they use the optimal synthesis  HHHH /,, 22  and the adaptive synthesis 

based on the dynamic inversion theory (Che and Chen 2001; Niewoenhner and Kaminer 1996; Liao et al. 2005), the 

neural networks theory (Singh and Padhi 2008; Mori and Suzuki 2009; Niculescu 2001; MIT Open Course 2007; 

Kargin 2007; Vo and Sridhar 2008), or fuzzy techniques (Abdullah and Ayman 2008; Zdenko and Stjepan 2006; 

Verbruggen and Bruijn 1997; Hampel et al. 2000; Zadeh 1965; Tomescu 2001; Jantzen 1998; Kumar et al. 2008; 

Mahfouf et al. 1999). These intelligent techniques have the advantage of very good adaptability, robustness, and 

software implementation capabilities. 

This paper approaches the automatic control of aircrafts in the longitudinal plane during the landing process, 

taking into consideration the longitudinal and vertical wind shears and the errors of the sensors. Two automatic 

landing systems (ALS) are designed: the former uses an ILS system, while the latter controls the altitude using the 

state vector. Both systems have a subsystem for the control of the longitudinal velocity ;xV  the velocity control 

uses the dynamic inversion and a first order command (reference) filter. 

The ALS with ILS system has a proportional-derivative pitch angle control system, and uses some sensors for 

the pitch angular rate and pitch angle measurement; the sensor for the measurement of the pitch angle may miss if 

the pitch angle signal is obtained by numerical integration of the angular rate .y  The second ALS has a pitch 

angle control system based on the dynamic inversion, PID controller, and a second order command filter. 



The paper has a lot of original issues; some of them are: the general design of the two new ALSs including the 

longitudinal velocity control, the tuning of the PID conventional controllers for the altitude, pitch and velocity 

channels, the design of the above controllers in an intelligent approach by using the fuzzy techniques, the study of 

the errors induced by the wind shears and errors of the gyro sensors on the both variants of the ALS (with 

conventional and fuzzy control). In section VII of the paper, all the originality issues are presented in detail. 

The paper is organized as follows: the geometry of the landing process, in longitudinal plane, is given in section 

II, the dynamics of the aircraft in longitudinal plane is presented in section III; in section IV the authors present the 

two new automatic landing systems for aircrafts flight control in longitudinal plane. The design of the fuzzy logic 

controllers is given in section V, while, in section VI, complex simulations have been performed to validate the 

proposed automatic landing systems; finally, some conclusions are shared in section VII. 

II. Geometry of the Landing Process in Longitudinal Plane 

If only the longitudinal plane approach is considered for the landing of an aircraft, then two phases are 

distinguished for this procedure (Fig. 1): 1) Glide slope (GS) phase ( 0HH  ), and 2) Flare phase ( 0HH  ); H  

is the aircraft altitude and 0H  is the starting altitude for the flare landing phase. 

In the glide slope phase of the landing process, an Instrumental Landing System (ILS) may be used to elaborate 

the signals for the aircraft flight control. In this way, the slope receiver forms a signal which depends on the angular 

deviation   (Fig. 1) provided by ILS; it is a guidance signal for the control system of the aircraft pitch angle 

(Donald 1990). A low-pass filter is used to cut the noise generated by the distortions from the equal signals zone 

(Aron et al. 1989). The control loop of the guidance system is closed by the aircraft kinematics, which transforms 

the aircraft pitch in a displacement with respect to the imposed (desired) glide slope .c  Usually, the value of the 

desired glide slope c  is .deg5.2  The other variables in Fig. 1 are:   flight path angle; d  the aircraft 

deviation in vertical plane with respect to GS, R  the distance from the aircraft to the intersection point between 

the Runway and GS, and 0V  the nominal velocity of the aircraft.  
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Fig. 1 The movement geometry during the glide slope landing phase 

 

The angular deviation   is expressed by one of the following formulas: 



 .][deg3.57,]rad[
R

d

R

d
  (1) 

while the component of the aircraft velocity along the normal direction to the glide slope is given by the equation: 

   .deg,
3.57

sin 0

0 
V

Vd  (2) 

For the two landing cases presented in Fig. 1, the relations between the angular variables can be expressed as 

follows: 

 ;, cc   (3) 

,, c  and   are expressed here in degrees. 

In the second landing phase (flare phase), the aircraft altitude may be expressed by using the equation: 

 ,0 HH  (4) 

where   is the time costant of the aircraft movement (glide slope phase). 

According to Fig. 2, the descendent rate, in the moment of the flare maneuver starting, is: 
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
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while, during the flare process, according to equation (4), it becomes: 
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Fig. 2 The movement geometry during the flare landing phase 

 

If the flare process takes, for example, 5  seconds (Donald 1990), and the velocity of the aircraft has not a 

significant variation, then, from Fig. 2.a, the coordinates of the contact point between the aircraft and the runway 

are: 



 .500  Vxxtd  (7) 

Using the equation (6) for 0HH   and the equation (5), we obtain: 

 ,
3.57

5.2
00  VH  (8) 

and, from Fig. 2.a, we get: 

    .0435.0tan 000 00
xxxxH pcp   (9) 

The equations (8) and (9) lead to the following one: 

  ,010 0
xxcV p   (10) 

where .9741.00425.0
5.2

3.57
1 








c  If the values of 0V  and 0H  are known, using the equations (7) and (10), we 

successively obtain the values of ,,
0px  and ;tdx  

 ,020 Hcxxtd   (11) 

with  .1120435.0/5 12  cc    

For this landing phase, a radio-altimeter is used to provide the altitude signal for the aircraft flight control. The 

input signal of the controller for the flare curve, depending on H (with H  of the form in (6)), may be determined 

by using the equation of the aircraft kinematics, i.e.: 

 ;,0  VH   (12) 

  is the aircraft pitch angle,   the attack angle of the aircraft, while   is the aircraft flight path angle ( ,,  and 

 are expressed here in radians). 

Because the flare trajectory is an exponential one, the aircraft would take a very long time to reach the point .tdA  

For this reason, the altitude refH  is chosen to be negative (see Fig. 2.b, where 
0AAp

 is the aircraft trajectory for the 

first landing phase, while AA0  is the flare curve). The coordinate 
0px  is expressed from the equation of the 

segment .
0pp AA  Thus,  

 .
tan0

c

p

pp

H
xx


  (13) 

The imposed altitude cH  for each point of the glide slope is calculated with the formula: 

   ,tan cppc xxHH   (14) 



while, for the flare curve, the next equation can be used (Singh and Padhi 2008): 

 
    .exp 00 xxkHHHH xrefrefc 

 (15) 

If 0H  and 0x  are known, the unknown variables refH  and xk  may be calculated. Other equations for the 

calculus of the flare trajectory parameters are, for example, the ones in (Juang and Cheng 2006), i.e.: 
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0t  is the starting time moment of the flare phase, while dt  the time moment when the aircraft touches the runway; 

 ,cos0 vxG VVV   (17) 

with vxV  the horizontal velocity of the wind. With   ,/00 xxxtt   the equation (16) gets the form: 
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0 














x

xx
HH c 

 (18) 

As a consequence, the equations (13) and (14) are used for the cH  calculus during the glide slope landing phase 

 ,0HH   while the equations (10) and (18) are used for the cH calculus during the second landing phase 

 ;0HH   x  and x  are the aircraft horizontal displacement and the aircraft horizontal velocity, respectively; 

 
.sinsincossincos 0  VVVVx xzx


 (19) 

III. The Dynamics of the Aircraft in Longitudinal Plane 

The linear model of the aircraft movement, in longitudinal plane, is described by the state equation: 

 ,vv vBBuAxx   (20) 

with -x the state vector, u the command vector, vv the vector of disturbances (it contains the components of 

the wind velocity along aircraft axes Ox  and Oz ), 
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the elements of the matrices are calculated with special equations (Lungu 2008), with respect to the stability 

derivates for the chosen aircraft type. 

The calculus equations for the components of the wind velocity may be by the forms (Che and Chen 2001; FAA 

1971): 

      ./2,cos1,sin 0000 00
TtVVtVV vzvzvxvx   (23) 

These relationships shape the wind shears; the aircraft, during the landing process, is disturbed by head wind and 

rear wind combined with vertical wind. In equation (23) 0T  is the flight time for the wind shear. 

In most of the cases, some coefficients of the matrices A  and B  are negligible or null, for examples 

,,, 341113 aba  and .32b  As a result, the first and third state equations become: 

 ,12141211 Txx baaVaV   (24) 

 .21333231 pyxy baaVa   (25) 

The inverse dynamic model with respect to the state variables xV  and y  is described by the equations: 

  ,333231
1

31 yxyp aaVab
cc

    (26) 

  ;141211
1

12   aaVaVb xxT cc

  (27) 

the variables “ cm ” are the calculated values of variables “ m ”. 

The relationship between the aircraft pitch rate y  and the angular rates   and   (Lungu 2008) is the 

following one: 

 ;sincoscos  
y  (28) 

taking into account the above equation and that the aircraft lateral movement during the landing process is stabilized 

(the roll angle 0 ), it follows cyc
   and the equation (25) becomes: 

  .333231
1

21 yxcp aaVab
c

    (29) 

c
  represents the calculated pitch angular acceleration (Kawaguchi et al. 2008), and c  is the calculated pitch 

angle, i.e. the command provided by the glide slope controller or by the flare controller. 

IV. ALSs for Aircrafts Flight in Longitudinal Plane 

In this section, two automatic landing systems (ALS) are proposed: 1) ALS with ILS system; and 2) ALS which 

controls the altitude by means of the state vector. The architectures of the two ALSs are shown in Figs 3 and 4. Fig. 



3 presents the ALS with the control made by means of the variables ,, H and ,xV  while Fig. 4 shows the ALS 

which uses the state vector in the control algorithm, with the prescription of the GS starting point  ppp HxA ,  

coordinates. The two ALSs are based on the aircraft movement geometry described in Figs 1 and 2.a, and on the 

geometry of the aircraft movement in Fig. 2.b, respectively. 

For the system in Fig. 3, the control law of the pitch angle  
cp  has been chosen having a PD form, while, for 

the system in Fig. 4, a PID form was used. For the structure in Fig. 4, the command law ,cp described by equation 

(28), is based on the dynamic inversion with c
  by the form (Calise and Rysdyk 1999): 

       ,d   tkkk pippcyc

 
 (30) 

where   and its derivatives represent the state variables of the second order command filter, commanded by a PID 

controller. The second order state filter (the system with respect to the variable   is a second order system) is 

described by the equation: 
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with the reference angle r  given by the PID controller having the equation: 
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Fig. 3 ALS with the control made by means of variables ,, H  and 
xV  

 

Similarly, the control law ,
cT  of form (27), with 

cxV  of the form: 

      tVVkVVkVV xxxixxxxxc
d

  (33) 

is based on the dynamic inversion principle (Pashilkar et al. 2006). 



A particular form of the ALS based on the architecture in Fig. 3 is presented in Fig. 5. The glide slope controller 

is a PI controller, but, for a better stabilization, we add an element which introduces a phase advance (Lungu 2000). 

Therefore, the controller transfer function becomes: 
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Fig. 4 ALS with the control made by means of the state vector 
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Fig. 5 ALS in longitudinal plane based on the block diagram in Fig. 3 

 

 The considered transfer function of the flare controller is: 

   .s
s

1
1s 













 d

i

cc T
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while the control law of the pitch angle has been chosen by a PD form. The gains of the angle gyro and of the 



angular rate gyro are 
pk  and ,

pk  respectively (Lungu 2000; Lungu 1997); 

   .  

pcpp kk
c

 (36) 

On the other way, the control of the aircraft altitude on the flare trajectory is not made by using the altitude ;H  

the control is made by means of the slope angle .  Thus, according to aircraft cinematic equation (12), by 

controlling the slope angle   we control H  and .H  To avoid the variation of the aircraft flight velocity, the 

component xV  of the aircraft velocity is controlled. The desired velocity 
cxV  is the input of a first order command 

filter (the relative order is expressed with respect to xV ), while 
cT  is a proportional control law: 

  ;xxxxT VVkV
c




 (37) 

xV  and xV


 are provided by the first order command filter. 

The horizontal velocity x  is obtained using the equation (19) and the aircraft horizontal displacement is obtained 

by the integration of .x  The transducer errors have little influence on the dynamic parameters of ALS (Lungu and 

Grigorie 2005; Grigorie 2007).  

From the other point of view, in the conditions of strong aerodynamic disturbances, the control laws may 

become inefficient. That is why some adaptive components were added to the PID components of the control laws in 

Fig. 4. Usually, these adaptive control laws are based, for example, on the concept of dynamic inversion and neural 

networks (Singh and Padhi 2008; Che and Chen 2001; FAA 1971; Liao et al. 2005; Mori and Suzuki 2009; 

Niculescu 2001; MIT Open Course 2007; Kargin 2007; Vo and Sridhar 2008). Also, in order to improve the performances 

of the automatic control system, the controllers in Fig. 5 were replaced by fuzzy controllers and a comparative 

analysis was performed. All the considered cases for the two ALSs proposed architectures were tested through 

numerical simulation. 

V. The Design of the Fuzzy Logic Controllers 

Fuzzy logic is an innovative technology that provides a simple tool to interpret the human experience into 

reality. This enhances the conventional system design with engineering expertise. The fuzzy logic use can help to 

circumvent the need for rigorous mathematical modeling, which is a very difficult task, if not an impossible one. 

Fuzzy logic controllers are rule-based controllers. The basic configuration of a fuzzy logic model can be simply 

represented in four parts: the fuzzifier, the inference engine, the defuzzifier, and a knowledge base. The fuzzifier 

reads, measures, scales the control variable, and transforms the measured numerical values into the corresponding 

linguistic variables with appropriate membership values. The knowledge base includes the definitions of the fuzzy 

membership functions defined for each control variables and the necessary rules (IF-THEN rules) that specify the 

control goals using linguistic variables. The inference engine calls to the fuzzy rule base to derive the linguistic 

values for the output linguistic variables. The defuzzifier converts the inferred decision from the linguistic variables 



back to the numerical values. Therefore, the development of the control system based on fuzzy logic involves the 

following steps: fuzzification strategy; data base building; rule base elaboration; inference machine elaboration; 

deffuzification strategy (Tomescu 2001). 

The simplest fuzzy controller is the proportional controller (FP), being relevant for state or output feedback in a 

state space controller. Its input is the error and the output is the control signal. From another perspective, derivative 

action helps to predict the error and the proportional-derivative (PD) controller uses the derivative action to improve 

closed-loop stability (Jantzen 1998). The equation of a PD controller can be expressed as follows: 
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where i(t) is the command variable in time, e is the operating error, pk  is the proportional gain and dk is the 

derivative gain. The control signal is thus proportional to an estimate of the error dT  seconds ahead, where the 

estimate is obtained by linear extrapolation. If the dT  time constant is zero, the controller becomes a purely 

proportional one. The gradual increase of the dT  value will produce damped oscillations of the system, over a 

threshold value the system becoming over damped (Jantzen 1998). 
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Fig. 6 FPD controller architecture 

 

In a discrete form, the equation (38) becomes (Kumar et al. 2008): 
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or 

 ).()()( kekkekki dp   (40) 

k  is the step, ST  the sample period, and  )(ke  the change in error. So, the inputs of the fuzzy proportional-

derivative (FPD) controller are the error and the derivative of the error (called the change in error) - Fig. 6. 

Additionally, if there is a sustained error in steady state, an integral action is absolutely necessary. The integral 

component will increase the control signal if there is a positive error, or will decrease it if the error is negative in 

order to obtain zero error value in steady state (Jantzen 1998). Considering the control law of a proportional-integral 

(PI) controller is easily to find from its discrete form that for a fuzzy PI controller obtaining are also used the error 



and change in error as inputs to the rule base (Kumar 2008). Literature shows that it is rather difficult to write rules 

for the integral action because of the integrator windup problem emerging when the actuator has physical 

limitations; after saturation the control action stays constant, but the error will continue to be integrated and the 

integrator to wind up (Jantzen 1998). Here, there are proposed two methods to obtain a fuzzy controller with an 

integral component and avoid the integrator windup problem: a fuzzy incremental controller architecture (Fig. 7.a), 

respectively, a parallel integral action and fuzzy PD architecture (Fig. 7.b). Also, in (Kumar 2008) two equivalent 

architectures for a fuzzy PID controller are given: a) fuzzy PI + fuzzy PD in feedback mode; b) fuzzy PI + fuzzy PD 

cascade configuration. The disadvantage of the incremental controller in Fig.7.a is that it does not include the 

derivative component well (Jantzen 1998). So, to have all the benefits of a PID control in a simple manner it is 

recommended to choose the structure in Fig. 7.b for FLC. 
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Fig. 7 Architectures for fuzzy controllers with integral component 

 

For the first FLC (first phase of the landing process) there was chosen the fuzzy proportional-integral-derivative 

(FPID) structure in Fig.7.b. Also, the [-1, 1] interval was chosen like universe for all of the input and output signals. 

After some numerical simulations we had opted for a number of three membership functions for each of the two 

inputs, and five membership functions for the output. The shapes chosen for inputs membership functions were s-

function, π-function, respectively z-function. Generally, an s-function shaped membership function can be 

implemented using a cosine function: 
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a z-function shaped membership function is a reflection of an s-function shaped one: 
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and a π -function shaped membership function is a combination between the first two: 

 )],,,(),,,(min[),,,,( 21121 xxxzxxxsxxxxx rightmmleftrightmmleft   (43) 

with the peak flat over the ],[ 21 mm xx  middle interval. x  is the independent variable on the universe, leftx  is the left 

breakpoint, and rightx  is the right breakpoint (Jantzen 1998). 

To define the rules, there was chosen a Sugeno fuzzy model, a model proposed by Takagi, Sugeno and Kang 

(Mahfouf et al. 1999). A Takagi, Sugeno and Kang fuzzy rule, for a two input - single output system, is of the 

following form: 

 ,”),(then)Bis(and)Ais(“ if 2121 xxfyxx   (44) 

where A and B are fuzzy sets in the antecedent, and ),( 21 xxfy   is a crisp function in the consequent; ),( 21 xxf  

is a polynomial function. If f is a first order polynomial, then the resulting fuzzy inference is called a first order 

Sugeno fuzzy model, while if f is a constant then it is a zero-order Sugeno fuzzy model. For a two input - single 

output system, there is given a first-order Sugeno fuzzy model, with N rules by (Mahfouf et al. 1999): 
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where )2,1( qxq  are the individual input variables, ),1( Niy i   is the first-order polynomial function in the  

consequent, and ),1(A Nii
q   are the associated individual antecedent fuzzy sets of each input variable.  

),1,2,1( Nika i
k   are the parameters of the linear function and ),1(0 Nibi   denotes a scalar offset. 

For any input vector, Txx ],[ 21x , if the singleton fuzzifier, the product fuzzy inference and the center average 

defuzzifier are applied (Sugeno), then the output of the fuzzy model y  is inferred as follows (weighted average): 
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 )(A)(A)( 2211 xxw iii x  (47) 

represents the degree of fulfillment of the antecedent, i.e., the level of firing of i
th

 rule. 

In the [-1, 1] universe interval, a three range partition, negative (N), zero (Z) and positive (P), were chosen for 

the inputs e  and e , and five-range partition, negative-big (NB), negative-small (NS), zero (Z), positive-small (PS) 

and positive-big (PB) were used for the output. According to the values in Table 1, the membership functions for 

both inputs are under the form depicted in Fig. 8, and are given by equations (41), (42) or (43): 
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Fig. 8 Membership functions and rule-based inference for the first landing phase FLC 

 

 Table 1 Parameters of the inputs membership functions                                  

for the first landing phase FLC 

 mf type 
mf parameters 

leftx  
1mx  2mx  rightx  

mf1 )AandA( 1
2

1
1  z-function -1 - - 0 

mf2 )AandA( 2
2

2
1  π -function -1 0 0 1 

mf3 )AandA( 3
2

3
1  s-function 0 - - 1 

For the output membership functions, constant values were chosen (NB=-1, NS=-0.5, Z=0, PS=0.5, PB=1), so 

the values of ),1,2,1( Nika i
k   parameters in equation (45) are zero. Starting from the membership functions of 

the input and output, a set of 9 inference rules were derived (N=9): 
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The rule-based inference chosen for each consequent is also represented in Fig. 9. From the previous 

considerations, the fuzzy control surface results under the form represented in Fig. 10. 

 

Fig. 9 The rule-based inference for the first landing phase FLC 
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Fig. 10 The fuzzy control surface for the first landing phase FLC 

 

For the second FLC (the second phase of the landing process) there was chosen the fuzzy proportional-derivative 

(FPD) structure in Fig. 6. The [-1, 1] interval resulted like universe for all of the input signals, while [-4, 0.2] 

interval was chosen like universe for the output signal. As in the first FLC case, we had opted for a number of three 

membership functions for each of the two inputs, and four membership functions for the output. The shapes chosen 



for the input membership functions were, also, s-function, π-function, respectively z-function; the membership 

functions for both inputs are by the form depicted in Fig. 8, and are given by the equations (41), (42) or (43). The 

parameters of these membership functions are similar with those chosen for the first lading phase FLC (see Table 1). 

 

Fig. 11 The rule-based inference for the second landing phase FLC 
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Fig. 12 The fuzzy control surface for the second landing phase FLC 

 

For the output membership functions, constant values were chosen (NB=-4, NS=-0.18, Z=0, P=0.2), and a set 

of 9 inference rules were derived (N=9): 
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The rule-based inference, chosen for each consequent, is presented in Fig. 11, while the resulted fuzzy control 

surface has the form in Fig. 12. 

VI. Numerical Simulation Results 

For the study of the ALS dynamics, we consider a Charlie-1 aircraft with the following stability derivates 

(Donald 1990):  
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With these, the matrices (22) become: 
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Fig. 13 Matlab/Simulink model for ALS with ILS system 

 

The altitude at which the glide slope landing phase begins is .m100ft320 pH  For the system in Fig. 5, we 

choose:  
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Fig. 14 The main variables of the ALS with ILS system in glide slope phase, with conventional controllers 
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Fig. 15 The main variables of the ALS with ILS system in flare phase, with conventional controllers 

 

Fig. 13 presents the Matlab/Simulink model for the system in Fig. 5. Firstly, the conventional controllers were 

used. In Fig. 14 and Fig. 15 are shown the dynamics of the main variables of the automatic control system, for the 

glide slope phase and for the flare phase, respectively, while in Fig. 16 the dependence  xHH   is depicted. The 

characteristics have been represented in the presence or in the absence of the wind shears ( ,/10
0

smVvx   

sTsmVvz 60,/15 00
 ). The presence of the wind shears is not very visible – the curves with solid line (without 

wind) overlap almost perfectly over the curves plotted with dashed line (with wind). The glide slope landing phase 



takes approximately 30 seconds; the time origin for the flare trajectory is chosen zero when the altitude is 

mHH 25.30   (the altitude at which the glide slope process ends). 
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Fig. 16 The landing trajectory  xHH   for ALS with ILS system which uses conventional controllers 

 

From the numerical simulations can be observed that, at the beginning of the landing phases, the variables have 

big amplitudes. That thing is due to the fact that the considered initial conditions were easily different by the trim 

conditions for the stability derivatives used in simulations and given in equation (53). 
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Fig. 17 The main variables of the ALS with ILS system in glide slope phase, with fuzzy controllers 
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Fig. 18 The main variables of the ALS with ILS system in flare phase, with fuzzy controllers 

 

If the conventional controllers for the ALS architecture in Fig. 5 are replaced by the previously designed fuzzy 

controllers, superior characteristics in terms of their dynamic and stationary qualities are obtained; this issue can be 

seen from the comparative analysis of the graphical characteristics in Fig. 14, and Fig. 15, with the equivalent 

characteristics in Fig. 17, and Fig. 18, respectively. 

The wind shears insignificantly affect the transient regime of the two landing phases – the differences between 

the solid curves and the dashed ones are minor; the steady regime is not affected (the steady values of the variables 

are the same). The trajectories  tH  are less influenced by the wind shears. The transient regime period is 

approximately the same for the two cases (with or without taking into consideration the wind shears). 

In the above simulations we did not take into consideration the errors of the sensors (used for the measurement 

of the state variables). These errors are considered within simulation below. 

For the gyro sensors, we consider the model of the error that takes into account the parameters from the data 

sheets offered by the sensors producers; the model of the error is described by the equation: 

 ,1)( 






 


K

K
BaS ri  (56) 

where   is the output angular rate (the perturbed signal), i  the input angular rate, S  the sensibility to the 

acceleration ra  applied along an arbitrary direction, B  the bias, K  the scale factor, K  the calibration error 

of the scale factor, and v  the noise of the sensor. 
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Fig. 19 The error model for the gyro in Matlab/Simulink 

 

Implementing the equation (56) in Matlab/Simulink, the model in Fig. 19 has been obtained. It considers that in 

sensors data sheets the bias is given by its maximum value B  as percentage of the span, the calibration error of the 

scale factor is given by its absolute maximum value K  as percentage of ,K  while the noise is given by using its 

maximum density value. Using the Matlab function “rand(1)” one generates the bias by a random value in the 

interval ,),( BB  the sensibility S  in the interval ,),0( S  and the calibration error of the scale factor in the 

interval ).,( KK   The noise is generated by using the Simulink block “Band-Limited White Noise” and the 

Matlab function “RandSeed” which generates a random value of its density in the interval .),%80( dd   

The inputs of the error model are the angular rate ,i  applied along the sensor sensibility axis, and the 

acceleration ,ra  considered to be the resultant acceleration signal that acts upon the carry vehicle, while the output 

is the disturbed angular rate .  In the numerical simulation, the following sensor parameters have been used: the 

noise density   ,/deg/1.0 Hzs  the bias  ,deg/5 s  the error of the scale factor ,%1 K  the sensibility to 

accelerations   ;/deg/18.0 gs  g


 is the gravitational acceleration. 

For the structure in Fig. 5, with fuzzy controllers, taking into account or not the errors of the sensor, the 

characteristics in Figs 20 to 22 are obtained (a – sensor without errors, b – sensor with errors). The first 30 seconds 

of the landing process correspond to the glide slope phase, while the next 12 seconds correspond to the flare phase. 

Fig. 23 presents the curves  xHH   for the variant with fuzzy controllers, with or without wind shears, with or 

without considering the errors of the gyro sensor. 

The sensor errors produce an increase of the signals amplitude in the transient regime and very small oscillations 

in the steady regime, but these errors do not affect the two landing phases. 



0 10 20 30 40 50 60
-4

-3

-2

-1

0

1

2

0 10 20 30 40 50 60
-4

-2

0

2

4

6

0 10 20 30 40 50 60
-3

-2

-1

0

1

2

3

4

0 10 20 30 40 50 60
-4

-2

0

2

4

6

8

Time [s] Time [s]

Time [s]Time [s]

a.

a.

b.

A
tt

ac
k
 a

n
g
le

 [
d
eg

]

A
tt

ac
k
 a

n
g
le

 [
d
eg

]
P

it
ch

 a
n
g
le

 [
d
eg

]

P
it

ch
 a

n
g
le

 [
d
eg

]

b.  

Fig. 20 The families of characteristics  t  and  t  for the system in Fig. 5 

(a – sensor without errors, b – sensor with errors) 

 

0 10 20 30 40 50
-100

-50

0

50

100

0 10 20 30 40 50
-100

-50

0

50

100

0 10 20 30 40 50
-10

-5

0

5

10

15

20

0 10 20 30 40 50
-20

-10

0

10

20

30

Time [s]

a.

Time [s]

a.

Time [s]

b.

Time [s]

b.

P
it

ch
 r

at
e 

[d
eg

/s
]

R
u
d
d
er

 d
ef

le
ct

io
n
 [

d
eg

]

R
u
d
d
er

 d
ef

le
ct

io
n
 [

d
eg

]

P
it

ch
 r

at
e 

[d
eg

/s
]

 

Fig. 21 The families of characteristics  tp  and  ty  for the system in Fig. 5 

(a – sensor without errors, b – sensor with errors) 
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Fig. 22 The families of characteristics  tVx  and  tVz  for the system in Fig. 5  

(a – sensor without errors, b – sensor with errors) 
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Fig. 23 The landing trajectory  xHH   by using fuzzy controllers with or  

without wind shears, with or without considering the errors of the gyro sensor 

 

The second proposed ALS (based on the dynamic inversion concept) Matlab/Simulink model can be seen in Fig. 

24 (based on the architecture in Fig. 4). Also, in Figs 25 and 26 are shown the dynamics of the main variables of the 

automatic control system, for the glide slope phase and for the flare phase, respectively, while in Fig. 27 is depicted 

the dependence  xHH  . The used controller is a PID one, with the parameters: 



         .deg/deg/5.0,deg/10,deg/5.0 4 sksmkmk h
d

h
i

h
p    (57) 

 

Fig. 24 The Matlab/Simulink model for the system in Fig. 4 – ALS based on the dynamic inversion concept 
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Fig. 25 The time characteristics in the glide slope phase for the ALS based on the dynamic inversion concept 
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Fig. 26 The time characteristics in the flare phase for the ALS based on the dynamic inversion concept 

 

Similar with the previously simulated cases (ALS with ILS system), the considered initial conditions were easily 

different by the trim conditions for the stability derivatives used in simulations and given in equation (53). 
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Fig. 27 The landing trajectories  xHH   for the ALS based on the dynamic inversion concept 

VII. Conclusions 

The automatic landing systems have subsystems for the control of the aircraft longitudinal velocity, control laws 

based on the dynamic inversion principle, slope controllers, flare controllers, conventional PD and PID controllers 

or PD and PID fuzzy controllers. The disturbances, which are taken into account in this paper, are the longitudinal 

and the vertical wind shears. Two types of ALS were developed and validated through numerical simulations: 1) 

ALS with ILS system; and 2) ALS which controls the altitude by means of the state vector. 



For the ALS with ILS system the wind shears insignificantly affect the transient regime of the two landing 

phases – the differences between the solid curves and the dashed ones are minor; the steady regime is not affected 

(the steady values of the variables are the same). The trajectories  tH  are less influenced by the wind shears. The 

transient regime period is approximately the same for the two cases (with or without taking into consideration the 

wind shears). For the second ALS, which controls the altitude by means of the state vector (ALS based on dynamic 

inversion, using conventional controllers), the wind shears affect insignificantly the two landing phases – the 

amplitudes of the signals are approximately the same for the glide slope landing phase and flare phase. The transient 

regime period is approximately the same for the two cases (with or without taking into consideration the wind 

shears). From the system transient regime period and overshoot point of view, the ALS based on dynamic inversion 

works better than the ALS with ILS system and conventional controllers. However, a significant improvement of the 

performance was obtained by replacing the conventional controllers with fuzzy controllers in the ALS with ILS 

system. More than that, the performances of the intelligent controlled ALS with ILS system are better than in the 

case of the ALS based on dynamic inversion. The numerical simulations show also the superiority of the dynamic 

qualities for the ALS with fuzzy controllers, especially in the case of strong wind shears. 

The authors also take into consideration the errors of the sensors for the measurement of system variables. It was 

observed that the sensor errors produce an increase of the signals amplitude in the transient regime and very small 

oscillations in the steady regime, but these errors do not affect the two landing phases. 

The authors’ contributions in this paper may be evidenced by the analysis of the two command systems. Thus, 

for the ALS in Fig. 3 and the system model in Fig. 5 the following original issues can be mentioned: 

1) the model of the ILS subsystem takes into consideration the time variation of the variable   ,tRR   

compared with Donald’s paper (Donald 1990), where the aproximation  00 RRR   is made; 

2) unlike other systems, our automatic landing systems have a low – pass filter, after the ILS, and a high – pass 

filter on the direct way of the controller for the pitch angle ;  

3) the design of the altitude controller for the glide slope phase and flare phase, both in classical and fuzzy 

logic approaches; 

4) the design of the pitch angle controller (PD conventional controller and PD fuzzy logic controller); 

5) the design of the longitudinal velocity controller, having as subsystem a first order command filter; the order 

is equal with the relative degree with respect to the variable ;xV  

6) the control laws of the three controllers (conventional or fuzzy) are chosen so that the system is easily 

configurable: the signals provided by the transducers for the velocity xV  and pitch angle   must be replaced 

by a strap – down navigation system (consisting of accelerometers and gyros); the velocity xV  is obtained 

by the integration of the signal provided by the accelerometer xa  (placed along the longitudinal axis of the 

aircraft), while the pitch angle is obtained by the integration of the signal provided by the pitch angular rate 

gyro ( y ); this signal, together with the one provided by an attack angle sensor (or an overload sensor), are 

used for the calculus of the flight path angle ,  of the descend velocity ,H  and of the altitude H  



(without the usage of an altimeter); so, only three sensors are necessary (a sensor for the acceleration ,xa  a 

sensor for the attack angle ,  and a sensor for the pitch angular rate y ); 

7) the study of the errors induced by the longitudinal and vertical wind shears and by the gyro errors, using 

conventional or fuzzy controllers. 

 

For the ALS in Fig. 4 the following original issues can be mentioned: 

1) the geometry of the landing process (the model for the calculus of the variables cp Hxxx
o

,,,,  ); 

2) the design of the PID controller for the altitude H  (equation (32)), the design of the command filter 

(reference model) for the pitch angle – equation (31), the design of the PID controller for the pitch angle 

(equation (30)), and the synthesis of the control law 
cp  by using the dynamic inversion concept (equation 

(26)); 

3) the design of the PID controller for the velocity xV  (equation (33)), the synthesis of the control law 
cT  by 

using the dynamic inversion concept (equation (27)), and the design of the afferent command filter; 

4) the same with the ones presented above (ALS with ILS) to the points 6) and 7). 
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