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Abstract ( This paper presents a new ON-LINE parametric identification and discrete optimal command algorithm for mono or multivariable linear systems. The method may be applied with good result to the automatic command of the flying object movement.

The simulation results obtained with this real time algorithm, with parametric identification of an air-air rocket’s movement in vertical plain regarding to target’s line are presented.
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1. INTRODUCTION

Because of fast flying parameters’ modify for the modern aircraft and rockets, performing real time identification and optimal or adaptive command algorithms have to be made. The authors of this paper have made such an algorithm.

First of all, an off-line parametric identification is made, without command, for obtaining the initial values of these parameters for the on-line identification process.

Using the leading system 
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 and model’s outputs, a discrete optimal command law is projected, using a quality quadratic criterion, which assures the convergence of the difference between leading system and model’s outputs. The model’s parameters, obtained by the ON-LINE identification, are used for he command law calculus.

For the algorithm validation one uses as example the automatic command of the 
[image: image2.wmf]A

’s movement in vertical plain; time characteristics, representing evolution of state variables of 
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 and their estimate, are plotted. These variables’ stabilization and the convergence of the errors 
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The proposed algorithm produces very good results in the case of longitudinal and lateral movement’s stabilization for transport and fights aircrafts.
2. CONTINOUS AND DISCRETE MODELS FOR  
The leading system (the movement of 
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) may be described by the input – output equations with general 
forms
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 The estimated model is described by equations
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where 
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The discrete variants of equations systems (1), (2), and (3), (4) are, respectively
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matrices 
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Another description form for the estimated system 
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or
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where 
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If 
[image: image47.wmf]p

m

=

, then equation (10) becomes

         
[image: image48.wmf]);

(

)

(

ˆ

)

(

)

(

ˆ

)

(

ˆ

)

(

ˆ

)

1

(

ˆ

1

k

U

k

k

u

k

b

k

Y

k

k

y

T

T

b

+

+

a

=

+

   (15)

if 
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where 
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 matrices may be calculated using ALGLX algorithm proposed by the authors of this paper or other algorithms [3], [4], [5].
3. 
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First of all the off – line system 
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For simulation of time varying of 
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The actualization of covariance matrix is made with formula [1]
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and, with this,
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where 
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State variables 
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4. IDENTIFICATION AND OPTIMAL COMMAND OF THE ROCKET’S MOVEMENT

For the identification and discrete optimal command algorithm’s validation, present above, a simulation program was made in the MATLAB medium.

Considering model of 
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With flying parameters’ values from [8], for the 40th second of flight, following step by step the algorithm, one obtained successively the results
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 vector of the system with optimal command
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Also one obtained 
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In fig.1 state variables 
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Fig.1 – Time varying of 
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5. CONCLUSIONS

The paper presents an ON – LINE parametric identification and discrete optimal command algorithm for linear systems. For validation, it is used to automatic command of a rocket’s movement in vertical plain with respect to equal signal line, which materializes target line. A simulation program based to presented algorithm was made in Matlab/Simulink. The obtained graphic plots express time evolution of the state variables 
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