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Abstract—The paper presents a way to improve the 

transient regime of a miniature accelerometer by using a 

fuzzy controller to close its loop. The fuzzy controller 

replaces an electronic block on the feedback path of the 

closed loop, block that, in the classical architecture, assured 

the system damping and, in the same time, played the role of 

elastic link of the accelerometer proof mass. For the 

proposed controller, proportional-derivative variant is 

chosen, and its input-output mapping is derived. The 

membership functions for inputs are s-functions, π-

functions, respectively z-functions, while the output 

membership functions have constant values. To define the 

rules, a zero-order Sugeno fuzzy model is chosen. Finally, a 

comparative numerical study between the classical and the 

proposed accelerometer architectures is made. 

I. INTRODUCTION 

Extremely important in the Inertial Measurement Units 
(IMU) of the aerospace navigation systems, the 
accelerometers always brought into discussion topics 
related to optimization techniques by which they are 
designed. Most of the accelerometers, because of the 
conferred advantages, are closed loop devices. Usually, 
the loop closing for such a sensor, based on the movement 
of a seismic mass under the influence of an inertial force, 
is achieved using some classical controllers of 
proportional-integral-derivative (PID) type. Lately, 
however, the intelligent control techniques have opened 
new opportunities to obtain controllers with high 
robustness, which gives simultaneously a number of 
advantages related to the system performance improving 
[1]-[4]. Moreover, miniaturization of the high-power 
computing systems, but also, the control technique based 
on the linguistic rules elaboration, come in support to the 
easy implementation of these control systems. In 
literature, already appeared several studies about the 
development of sensors that address this type of control, 
for both miniaturised and non-miniaturised sensors [5]-
[7]. 

The here presented work was developed in a research 
project concerning the development of high-precision 
strap-down inertial navigators, based on the connection 
and adaptive integration of the nano and micro inertial 
sensors in low cost networks, with a high degree of 
redundance, financed by National Council for Scientific 
Research in Higher Education (CNCSIS) in Romania. 

This paper presents a way to improve the accuracy of 
an accelerometer using a fuzzy controller to close its loop. 
The study starts from an optimized version of the 
accelerometer, based on the use of an electronic 
amplification and filtering block of proportional-

derivative (PD) type, heaving the role to replace the elastic 
link of the proof mass and the damper [8]. 

II. MATHEMATICAL MODEL OF THE PREOPTIMISED 

ACCELEROMETER AND CLASSICAL LOOP CLOSING 

Initial study performed on the accelerometer ([8]) led to 
the functional scheme in Fig. 1, showing that the 
accelerometer is a closed loop one, having on the direct 
path, a displacement transducer, and on the feedback path 
an amplification and filtering block and a permanent 
magnet whereon slides a coil. The aims of this initial 
study were: system dimensioning, choice of optimal 
configuration of the amplification and filtering block and 
of the optimal values of the elements in its scheme [8]. 

Figure 1.  Functional scheme of the accelerometer 

According to [8], notations in Fig. 1 are: a
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 feedback force. Relative to the 

vehicle frame, from Fig. 1 it results the equation: 
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corresponding output voltage of the displacement 
transducer can be derived as: 
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with 
t

k  the transducer constant. 

Differential equation of the electrical current passing 
through the coil in the feedback path is: 
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with L  coil inductance, R  coil resistance, and i  

electrical current. The feedback force can be expressed by 
the relation: 
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where B  is magnetic induction of the permanent magnet, 
N  number of turns, and D  coil diameter. If   is the 

electrical resistivity, characterizing the coil conductor, and 
d  is conductor diameter, then L  and R  have the next 
formulas: 
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Analysis on the optimal configuration of the system led to 
the next relationship between the input and the output 
voltages of the amplification and filtering block 

 ;1
2

1

1
U

Y

Y
U 










  (7) 

11
sCY   and ./1

22
RY   As a consequence, the dynamic 

regime of the accelerometer is described by the equations 
(2)-(5) and (7). 

Applying the Laplace transform to the previous 
mentioned relations, they become: 
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)1s()s( F  is the transfer function of the 

amplification and filtering block (
21

RC ). Starting from 

the relations (8), it results the system block diagram with 
transfer functions in Fig. 2; the next notations were used: 

mR
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  The accelerometer equivalent 

Matlab/Simulink model results under the form presented 
in Fig. 3. 

Figure 2.  Block diagram of the accelerometer 

Figure 3.  Accelerometer Matlab/Simulink model 

Representing the amplitude-frequency characteristics 

( )( jH  as a function of f ) and the step response of the 

system for different values of the parameter   (1 ms, 1,5 
ms, 2 ms, 2,5 ms, 3 ms), the curves in Figs 4 and 5 were 
obtained; )( jH  is the transfer function of the closed 

loop system, under the frequency domain form. Based on 
the observation (see Figs 4 and 5) that a non-monotone 

)( jH  function in the ),0[   frequency interval equate 

with the occurrence, when applying a unit step 
acceleration type, of unwanted oscillations of inertial 
mass, has achieved an optimization subroutine of   which 

provided the value ms.1373266,2
opt

 

Figure 4.  Amplitude-frequency characteristics 

Figure 5.  Step response 
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From the numerical values set out in [8] for the 
components of the accelerometer, resulted that it has a 
linear static characteristic with a negative scale factor 

m./Vs137030102,0 2K  

III. PROPOSED APPROACH FOR ACCELEROMETER 

CLOSED LOOP ARCHITECTURE 

Considering the configuration of the accelerometer in 
Fig. 1, correlated with the block diagram with transfer 
functions in Fig. 2, one concluded that the system can be 
controlled by a fuzzy logic controller, placed on the direct 
path, after the displacement transducer, as shown in Fig. 6. 
As a consequence, this controller substitute the electronic 
amplification and filtering block (placed on the feedback 
path in the initial version) and controls the supply voltage 
of the coil. So, the new accelerometer output consists of 

the 
1

U  voltage supplying the coil which creates the 

feedback force (Fig. 7). 

Figure 6.  The new functional scheme of the accelerometer 

Figure 7.  Accelerometer block scheme using fuzzy controller 

Fuzzy logic technique, based on the fuzzy sets theory 
developed by L. Zadeh [9], provides a simple tool to 
interpret the human experience into reality, enhancing 
conventional system design with engineering expertise. 
Fuzzy logic controllers are rule-based controllers, the 
basic configuration of a fuzzy logic model being simply 
represented in next parts: the fuzzifier, the inference 
engine, the defuzzifier, and a knowledge base. So, the 
design of a fuzzy logic control system supposes the 
following steps: fuzzification strategy choosing; data base 
building; rule base elaboration; inference machine 
elaboration, and deffuzification strategy establishing [10]. 

Through analogy with the classical methods of control, 
the simplest fuzzy controller is the proportional controller 
(FP). Its input is the error and the output is the control 
signal. On the other way, the derivative component in a 
controller helps to predict the error, so, by combining the 
proportional and derivative actions in a controller an 
improvement in the closed-loop stability is obtained [11]. 
In this way, if the equation of a proportional-derivative 

(PD) controller is 
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the obtained control signal is proportional to an estimate 
of the error TD seconds ahead; i(t) is the command 
variable in time, e is the operating error,  KP is the 
proportional gain and KD is the derivative gain. Expressed 
in discrete form, the equation of a PD controller is [12] 
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k  is the step, 
S

T  - the sample period, and )(ke  - the 

change in error. In our case, the chosen fuzzy controller is 
of type PD so, the inputs to the controller are the voltage 
U  and the derivative U  of the voltage U  (change in 

voltage), while the voltage 
1

U  is the command variable 

(controller output). 

For our system, the [-1, 1] interval was chosen like 
universe for all of the input and output signals. Also, we 
had opted for a number of three membership functions for 
each of the two inputs, and five membership functions for 
the output. The linguistic terms for inputs are N 
(negative), Z (zero) and P (positive), while for output are 
NB (negative big), NS (negative small), Z (zero), PS 
(positive small), and PB (positive big). The membership 
functions for inputs are s-functions, π-functions, 
respectively z-functions. To define the rules, a Sugeno 
fuzzy model was chosen, model proposed by Takagi, 
Sugeno and Kang [13]. In this way, for a two input - 
single output system the fuzzy rule is of the form: 

   ,”),(then)is(and)is(“ if
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where A and B are fuzzy sets in the antecedent, and y=f(x1, 
x2) is a crisp function in the consequent; f(x1, x2) is a 
polynomial function. For the output membership functions 
constant values were chosen (NB=-1, NS=-0.5, Z=0, 
PS=0.5, PB=1), while the parameters of the inputs’ 
membership functions are presented in Table 1. 

TABLE I.   
PARAMETERS OF THE INPUTS’ MEMBERSHIP FUNCTIONS 

 mf type 
mf parameters 

xleft xm1 xm2 xright 

mf1 )and( 1

2
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AA  z-function -1 - - 0 
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AA  s-function 0 - - 1 
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antecedent fuzzy sets of each input variable, x is the 
independent variable on the universe, xleft is the left 
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breakpoint, xright is the right breakpoint, and [xm1, xm2] is 
middle interval in that the peak flat – characterising the s-
function, z-function, and π-function shapes. 

Starting from the inputs’ and output’s membership 
functions, a set of nine inference rules were derived: 
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The rule-based inference chosen for each consequent is 
also presented in Fig. 8, and the resulted fuzzy control 
surface in Fig. 9. 

Figure 8.  Membership functions and rule-based inference 

Figure 9.  The fuzzy control surface 

The new Matlab/Simulink model of the accelerometer 
results by the form in Fig. 10. 

Figure 10.  Matlab/Simulink model of the accelerometer using fuzzy 

controller 

Representing on the same chart the step response of the 

accelerometer for initial variant (for ms,5.1  
opt
  

and ms3 ) and for new variant (using fuzzy 

controller), the characteristics in Fig. 11 were obtained. 
Fig. 12 is a zoom of the characteristics in Fig. 11, which 
shows that by using fuzzy controller to close the loop of 
the accelerometer, its transient regime was reduced from 

12.25 ms (obtained for 
opt
  in the classic version - Fig. 

12 b) to 0.08 ms (Fig. 12 a), that is 153.125 times. 

Figure 11.  Step response: fuzzy vs. classical 

Figure 12.  Transient response: fuzzy vs. classical (
opt
 ) 
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The assessment of the accelerometer precision, with 
design in the classical variant, made in [8], led to the 
conclusion that if it is used in an inertial navigation 
system, the resulted positioning errors are due in most part 
of the transient regime of the accelerometer. To achieve a 
qualitative test of the accelerometer new architecture one 
suppose that it is boarded on a vehicle which moves 
straight and is subject to an acceleration signal by the form 
of repeated steps as in Fig. 13; the same input signal is 
applied to the scheme which models the classical variant. 
Accelerometer response in the two variants is shown in 
Fig. 14: Fig. 14 a - fuzzy controller, Fig. 14 b – classical 
variant.  

Figure 13.  Repeated step applied acceleration 

Figure 14.  Accelerometer response for repeated step input 

Calculating the distance covered by the vehicle by 
using two methods, a theoretical one and another one 

based on the )(
1

tu  information (respectively on the )(tu ) 

obtained through numerical simulation at the system 
output, the next results are highlighted: 1) vehicle 
coordinate from the theoretical method, m;525.1x  2) 

vehicle coordinate from the numerical simulation of the 
architecture including fuzzy controller, m;1.5248065

fuzzy
x  

3) vehicle coordinate from the numerical simulation of the 
classical architecture, m.1.5232985

classical
x  The relative 

positioning errors appearing in the two cases are 

%101.268 -2
fuzzy

, respectively %;1511.0
classical

 the 

values show that the improvement of the transient regime 
by the fuzzy controller produces a reduction, with 
approximate one order of magnitude, of the relative 
positioning error, when the accelerometer is used in a 
mono-dimensional inertial navigator. 

IV. CONCLUSIONS 

The paper presented a new approach in terms of closing 
the loop of an accelerometer, by substituting an electronic 
amplification and filtering block (having the role of 
damper and elastic link for the accelerometer proof mass) 
with a proportional-derivative fuzzy controller placed 
unconventionally at the end of the direct path of the loop. 
The fuzzy controller aim was to control the voltage 
applied to an electrical coil which provided the feedback 
force. Comparatively with the classical architecture, the 
new approach reducing the transient time of the 
accelerometer of approximately 150 times, improving in 
this way the positioning performance of the accelerometer 
if an inertial navigation system included it. A comparative 
test proved that the positioning relative error was reduced 
with approximately one order of magnitude if the fuzzy 
logic closed loop architecture is used beside the classical 
architecture. 
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