
 

 

  

Abstract— The paper presents a new method to compensate 

errors due to temperature variation at cold junction of the thermo-

couples. The presented method is based on the realization of a neuro-

fuzzy controller in order to get a quick error compensation model 

based on information related to the cold junction temperature 

variations. The model uses the experimentally obtained numerical 

values and has the advantage of fuzzy logic to process empirical 

signals, without using analytical mathematical models. 
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I. INTRODUCTION 

HE temperature’s measurement using thermocouples are 

based on thermoelectric phenomenon discovered in 1821 

by Seebeck [1], [2], [3]. The use of this phenomenon to 

measure temperature is based on the existence of certain 

relationships between thermo-electromotive forces (f.t.e.m.), 

which are established in a circuit composed of several different 

conductors, and the temperatures in the connection points of 

these conductors. If a circuit, composed by two different 

conductors, A and B, is considered (Fig. 1), at the heating of 

the junction 1 an electrical current appears in this circuit. This 

electrical current is called thermo-electrical, and devices that 

produce it are called thermocouples or thermo-elements. 

Electromotive forces, which arise due to different potentials of 

the junctions under different temperatures, are called thermo-

electromotive forces [1], [2], [3]. 

The basic equation of the thermocouple can be written as a 

general equation expressing the variation of thermo-

electromotive force, occurring in a circuit composed of two 
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different conductors (Fig. 1), as a function of the junctions’ 

temperatures [2], [3] 
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In equation (1) the EAB is a resultant electromotive force 

determined by the total effect, e - electromotive force subject 

to the temperature difference at the ends of conductors A and 

B; with indices A and B notes conductors between the 

resultant electromotive force is generated; index sequence 

shows how the force should be considered when changing 

from one electric conductor to another. It is clear that 

reversing the order indices one will have to change the sign 

before the second term  
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i.e. f.t.e.m. appearing in the circuit composed of two different 

conductors, whose junction points have different temperatures, 

is the difference between the resultant thermo-electromotive 

forces. 

Fig. 1 Thermocouple device 

Noting the electromotive force e in equation (2) with f (t), 

one can write the general formula for the variation of the 

f.t.e.m. as a function of the temperatures t and t0 of the 

thermocouple junctions 
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Assuming the temperature of one junction of the 

thermocouple as a constant, i.e. accepting t0=ct., and having a 

relationship f (t0)=C, one gets 
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If the relationship expressed by equation (4) is known from 

a curve, a table or an experimentally determined equation, the 

measurement of the unknown temperature t will be reduced to 

the measurement of the EAB (t, t0) f.t.e.m. It is assumed here 

that the temperature t0 remains constant. Through the 

temperature t0 deviation from the considered constant value, 

equation (4) loses its validity because the variation of this 

temperature implies the changes of the constant C [2], [3]. 

F.t.e.m. appearing in a thermocouple is not larger (0.01-0.06 

mV/degree); however it can be measured with sufficient 

accuracy with a millivoltmeter or a pyrometric potentiometer. 

Any meter used in a thermoelectric assembly is calibrated 

against the reference temperature to which must by the cold 

junction. This temperature is indicated by the initial bench-

mark of the stairs ( C20,C0 ��  or C50
� ) [1]-[3]. 

To perform measurement in a right way, cold junction 

temperature must be maintained at a constant value (the value 

considered to the calibration), or the measured value must be 

determined based on calculations by adjusting the zero 

position of the indicator device or by using the compensation 

devices, whether or not there is an extension wire. 

Two approaches (methods) are commonly used for cold 

junction compensation [4]. 

The first method consists in the electronically simulation, 

with specialized integrated circuits, of the potential effects that 

result for a thermocouple wire pair between the terminals, at 

their measured temperature, and another junction at 

maintained at a reference temperature of 0 degrees. Through 

the measurement of the potential across the thermocouple wire 

pair in series with the simulated potential, followed by the 

linearization curve of the sum, an estimated absolute 

temperature will be obtained. Generally, the method is affected 

by two errors: cold junction temperature estimation error, and 

the approximation of the junction potential effects. The cali-

bration with this method is difficult and, in the most cases, 

limited to the offset adjustment. 

A second method supposes the independently measurement 

of the cold junction temperature, like in our application. In this 

case, the cold junction compensation can be performed by 

computation using look-up tables and polynomial interpolation 

starting from the experimentally obtained data. 

Let t be the temperature of the warm junction of the 

thermometer and t0 the cold junction temperature for which 

was calibrated the thermocouple. Suppose that cold junction 

temperature has suffered a change, becoming equal with 
0
t ′ . 

Thus, f.t.e.m.  )(
0
 tt, E

AB
′  of the thermocouple will be different 

from the value determined during calibration. Results 
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So, the correction to be made is 
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In equation (8) the right side is equal with ),( 00 ttEAB ′ , and 

one obtain 

 

)()()( 0000 tt,-Et, tE,ttE ABABAB ′=′ . (9) 

 

So, the correction is ),( 00 ,ttEAB ′  and this can be read on the 

thermocouple characteristic built maintaining the cold junction 

temperature at the value t0. 

The purpose of the proposed controller is to get a quick 

error compensation model based on information related to cold 

junction temperature variation. The model uses numerical va-

lues experimentally obtained and has advantage of fuzzy logic 

to process empirical signals, without using analytical mathe-

matical models. Fuzzy logic can emulate the decisions of 

human factor expert in these systems, linguistically formulated 

in terms of   fuzzy rules in the IF-THEN form. Fuzzy logic 

approach can be successfully applied in complex systems, 

where simplified mathematical models do not exist, in highly 

nonlinear systems, and also in multidimensional systems [5], 

[6], [7]. 

In a fuzzy control system the input variables are usually 

mapped by a set of membership functions (mf) known as 

“fuzzy set”. The mapping process is called “fuzzification”. 

Control system makes decisions based on a set of fuzzy rules, 

which are invoked using the membership functions and logical 

values obtained from the inputs. The process is called “infe-

rence”. Decisions are mapped into membership functions and 

truth values that control the output variables. The results are 

combined to give a specific response by a procedure called 

“defuzzification”. Therefore, the development of such a model 

requires a set of fuzzy rules and membership functions asso-

ciated with each of the inputs [5]-[7]. 

The crucial aspect to get a good fuzzy model is ability and 

experience of the designer correctly assess rules and member-

ship functions for all inputs. Recent design method allows 

building of a good model using a combination of fuzzy logic 

and neural-network. This method offers the possibility to 

generate and optimize the set of fuzzy rules and membership 

functions parameters by training of the fuzzy inference system 

(FIS). The method used for numerical experimentally obtained 

data processing is a hybrid method, which combines a back-

propagation algorithm and a least squares method. It is 

implemented in Matlab software already. The method is easy 

to use and gives good results in a very short time [5], [6], [7]. 

II. CONTROL IMPLEMENTATION 

For the proposed study a chrome-alloy thermocouple was 

chosen. The values obtained from the output of the thermo-
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couple can be extracted from experimental data. For this the 

temperature of cold junction should keep the constant value of 

20 °C and the cold junction temperature is changed in the 

range of 50 °C÷100 °C. The disturbed values of the 

thermocouple output for measured temperatures in the range of 

50 °C÷110 °C are calculated based on these values. Fig. 2 

shows dependencies of the thermocouple output disturbed 

values to a real temperature and the cold junction temperature. 

The designed controller will provide the real value of the 

measured temperature t, and will use as inputs the perturbed 

f.t.e.m. ,)( 0tt, EE ABc
′=  which is obtained directly from the 

thermocouple, and the real cold junction temperature 
0
t ′  

provided by an additional thermocouple [2]. 

Conceptually, fuzzy controllers are quite simple and use 

fuzzy inference systems (FIS). To build a fuzzy controller 

input, processing and output phases need to be accomplished. 

First, inputs are mapped to membership functions (mf), and a 

collection of logical “IF-THEN” rules is created. Second, 

every rule needs to be invoked for a result generation. And 

last, results of all rules need to be combined and translated into 

a specific controller output value [6]. 

Fig. 2 The dependence of the disturbed thermocouple output 

by the real temperature and by the cold junction temperature 

Considering the experimental numerical values, mentioned 

above, one can develop an empirical model based on a neuro-

fuzzy network. The model can learn the behavior of the pro-

cess by the use of a Fuzzy Inference System (FIS). 

FIS can be easily generated with Matlab functions “genfis1” 

or “genfis2”. The function “genfis1” generates a Sugeno type 

FIS with one output using the method of grid partitioning (not 

clustering). This FIS is used to provide initial conditions for 

training with ANFIS Matlab function. The function “genfis1” 

uses membership functions of generalized Bell-type for each 

input. Each rule generated by “genfis1” has an mf of linear 

type, with a single output. Another way to create the FIS is by 

using Matlab function “genfis2”. This generates a Sugeno type 

FIS by operating domain decomposition in different regions 

using subtractive clustering method. For each region a linear 

model can describe the local process parameters. Thus, the 

non-linear process is locally liniarized around an operating 

point using the least squares method. The obtained model is 

valid in the surrounding region of the operating point. Fuzzy 

sets of membership functions are associated with each input of 

the model. The input domain is divided into fuzzy regions by 

combining fuzzy inputs. A linear model is used for each of 

these regions, while the overall model is obtained by using 

center of gravity defuzzification (Sugeno) method, which per-

forms interpolation of local model outputs [5], [6], [7]. 

Parameters of Sugeno type FIS can be calculated using 

neural networks that are being trained with the Matlab function 

“ANFIS”. It uses a learning algorithm to identify parameters of 

membership functions of the FIS with two inputs and one 

output. As a starting point the input-output experimental data 

and FIS model, generated with “genfis1” or “genfis2” 

functions, are used. The “ANFIS” function optimizes the 

parameters of membership functions for a number of training 

epochs determined by the user. As a consequence of this opti-

mization the neuro-fuzzy model can reproduce better the 

process; the quality of reproduction is controlled using a para-

meter resident in the training algorithm. After training the 

obtained model can be used to generate the real measured tem-

perature corresponding to the input data [6]. 

To train the fuzzy system, the ANFIS function uses a back-

propagation algorithm for parameters associated with member-

ship functions of inputs, and an estimation with the least squa-

res method for the parameters associated with the membership 

functions of output. For the FISs generated using the function 

“genfis1” membership functions are generalized Bell-type, and 

for “genfis2” function by the Gaussian type [5]. 

III. CONTROLLER DESIGN AND EVALUATION THROUGH 

NUMERICAL SIMULATION 

To generate the FIS necessary for the controller develop-

ment, the Matlab function “genfis2” was used. The best 

training results of FIS were obtained for 100.000 epochs of 

training. A set of 9 rules was computed. They have a structure 

like: if (in1 is in1cluster„k”) and (in2 is in2cluster„k”) then 

(out1 is out1cluster„k”). 9 Gaussian type membership 

functions for each of the two inputs were generated as well. 

The notation for them is as follows: in„j”cluster„k”; j is the 

number of the input (1÷2), and k is the number of the 

membership function (1÷9). The FIS has the structure 

presented in Fig. 3, while the associated controller has the 

structure like in Fig. 4. 

To view the FIS properties, the Matlab command 

“anfisedit” is used. The FIS is imported as well at the interface 

level. The interface allows to view the following 

characteristics of FIS: membership functions of the first input 

(perturbed f.t.e.m. )( 0tt, EE ABc ′= ), membership functions of 

the second input (cold junction temperature), defuzzification 

rules, and the surface generated for the model, starting from 

the two inputs. 
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Fig. 3 FIS structure 

Fig. 4 Controller structure 

The parameters of the inputs’ membership functions before 

FIS training are presented in Table I. For the Gaussian type 

membership functions the parameters offered by Matlab are 

half of the dispersion σ/2 and the peak. 

By calling the function “ANFIS” is triggered a neuro-fuzzy 

type adaptive algorithm, which identifies and modifies the 

parameters of the previously generated FIS membership 

functions. If the learning algorithm is run for 10, 100, 5.000, 

10.000, 30.000 or 100.000 training epochs, then deviation 

between the neuro-fuzzy model and experimentally determined 

data, for the purposes of resident quality parameter in training 

algorithm, is presented in Fig. 5. The after training FIS 

evaluation was done with command “evalfis”; in Fig. 6 are 

presented the experimental data (continuous line contours) and 

the output of the FIS model (drawn with dashed curves) after 

100.000 training epochs. 

From Fig. 5 one observes a rapid decrease in deviation 

between the experimental data and neuro-fuzzy model, in the 

sense of quality parameter resident in the training algorithm, 

for the first 200 training epochs, followed by a slower decrease 

in the next 1300 training epochs, by another quick decrease 

between 1500÷1700 training epochs, and finally by a very 

slow decrease period between 1700÷100.000 training epochs 

range. 

According to the graphs, it is sufficient that the FIS model 

to be trained over 100.000 training epochs, because the 

deviation get into an approximately constant zone with the 

value of 0.12·10
-4

. Fig. 6 fully reflects the observations made 

for Fig. 5; to note the juxtaposition of the FIS model 

(evaluated for input data) with the experimental data even 

better with higher number of training epochs. Training model 

for more than 100.000 epochs produces a very small decrease 

in value of the deviation; a closer approximation of the real 

model by neuro-fuzzy model is accomplished if enlarged set of 

experimental data, describing the evolution of error, is used.

Fig. 5 Deviation between the neuro-fuzzy model and the experimental data, as a function of training epochs 
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Fig. 6 Evaluation of the trained FIS 

 
TABLE I 

PARAMETERS OF THE INPUTS’ MEMBERSHIP FUNCTIONS BEFORE TRAINING 

Perturbed f.t.e.m. [mV] Cold junction temperature [oC] 

 σ/2 Peak  σ/2 Peak 

mf1 9.224 15.14 mf1 24.75 20 

mf2 9.224 34.93 mf2 24.75 0 

mf3 9.224 30.44 mf3 24.75 70 

mf4 9.224 3.29 mf4 24.75 60 

mf5 9.224 8.07 mf5 24.75 -30 

mf6 9.224 25.08 mf6 24.75 -40 

mf7 9.224 16.05 mf7 24.75 80 

mf8 9.224 43.62 mf8 24.75 -40 

mf9 9.224 42.8 mf9 24.75 50 

 

Trained model properties presented in Fig. 7 are: 

membership function of the first input, membership function of 

the second input, defuzzification rules, and the surface genera-

ted for the model starting from the two inputs. 

The parameters of the inputs’ membership functions after 

FIS training over 100.000 training epochs are presented in 

Table II. 

A comparative analysis of the FIS characteristics and 

parameters of membership functions before and after training 

has shown that there is a redistribution of membership 

functions in the domain and their shapes change while 

dispersion is modified. As we said earlier, for the Gaussian 

type membership functions the parameters are the dispersion 

and the peak. According to the parameters numerical values in 

Table I, the FIS generation with the Matlab function “genfis2” 

from the experimental data gives the same dispersion value for 

all membership functions of an input. Also, for each input of 

the FIS, different values of the Gaussian functions peaks are 

automatically generated, in order to approximate the general 

model with local linear models using least squares method. 

To optimize membership functions parameters (the 

dispersion and the peak), the training of the FIS model with 

“ANFIS” function with hybrid algorithm was used. As a 

consequence of the training, the surface showing the 

dependence between the FIS’s inputs and output (Fig. 7), 

better approaches to the surface showing the dependence 

between the same parameters acquired from the experimental 

data set (Fig. 2). 

Evaluation of the controller for experimental data as inputs, 

after different training epochs, lead to deviations presented in 

Table III between the neuro-fuzzy model and experimental 

data; deviations reflect the corrected temperature. Analysis of 

data in Table III shows a positive trend of the deviations, in 

order to reduce their absolute values, both positive and 

negative peak deviations, and the absolute mean deviations. 

Fig. 7 Properties of the trained model 
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TABLE II 

PARAMETERS OF THE INPUTS’ MEMBERSHIP FUNCTIONS AFTER TRAINING 

Perturbed f.t.e.m. [mV] Cold junction temperature [oC] 

 σ/2 Peak  σ/2 Peak 

mf1 3.636 12.62 mf1 41.96 9.111 

mf2 6.786 20.21 mf2 45.62 1.25 

mf3 16.47 37.37 mf3 37.9 55.91 

mf4 2.292 222 mf4 30.45 54.27 

mf5 2.594 9.059 mf5 26.87 -18.61 

mf6 14.99 26.15 mf6 33.25 -40.05 

mf7 6.83 10.35 mf7 29.82 76.74 

mf8 13.22 35.72 mf8 33.29 -36.34 

mf9 14.42 40.52 mf9 38.61 47.3 

 
TABLE III 

DEVIATIONS BETWEEN FUZZY CONTROLLER OUTPUT AND EXPERIMENTAL 

DATA REFLECTING CORRECTED VALUES OF THE TEMPERATURE 

Training 

epochs 

Absolute mean 

deviation [oC] 

Maximum positive 

deviation [oC] 

Maximum negative 

deviation [oC] 

10 0.44187 1.8936 -2.8235 

100 0.3892 1.5008 -2.7416 

5000 0.1363 0.8658 -1.5820 

10.000 0.1310 0.8161 -1.4879 

15.000 0.1273 0.7675 -1.4065 

30.000 0.1185 0.6600 -1.1630 

100.000 0.0922 0.3243 -0.5017 

 

The values obtained after 10 training epochs were 0.44187 

°C for the absolute mean deviation, 1.8936°C for the 

maximum positive deviation, and -2.8235°C for the maximum 

negative deviation. After 100.000 training epochs the 

deviation were seriously reduced, the acquired values being 

0.0922°C for the absolute mean deviation, 0.3243°C for the 

maximum positive deviation, and -0.5017°C for the maximum 

negative deviation. So, using this method the indication error 

for the temperature is maximum 0.5017°C for a chrome-alloy 

thermocouple calibrated at 20°C that measure temperatures in 

the range -50°C÷1100°C, and is affected by a cold junction 

temperature variation in the range -50°C÷100°C. For the 

previous conditions, if no compensation method is used, the 

maximum indication error is 79°C. 
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